

SuperCDMS SNOLAB Status and Prospects

Lake Louise Winter Institute

February 22, 2022

Priscilla Cushman

University of Minnesota

The SuperCDMS Collaboration

~100 scientists at 27 institutions including 3 US national labs and 2 Canadian labs

Layered approach to creating ultra low-background, 15 mK environment

Low-background lead/poly shield was out-sourced to Lemer Pax

At SNOLAB depths, there is no need for a muon veto.

Outer Neutron Shield = 61 cm water in modular stainless steel tanks 20 cm of graded-radiopurity lead 41 cm Inner poly shield Radon Barrier Copper < 1 cryostat Bq/m³ mu-metal liner B-field < 5 mThigh-density poly base

Preassembled at Nantes Factory
Archaeological lead cast in assayed crucibles
All materials assayed by ICPMS and HPGe

Inner 1 cm of Pb: 0.08 Bq/kg ²¹⁰Pb, < 0.4 mBq/kg U/Th/K

SuperCDMS Experiment in SNOLAB

Infrastructure in place, Shield stored underground CUTE is running now w/ small next-gen detectors

Towers 1 + 2 arrive this June Towers 3 + 4 arrive this Sept

Early physics in CUTE

Fridge test at FNAL successful Cryo and shield assembly this year

Anticipate all detectors cold and running in SuperCDMS cryostat by Fall 2023.

Very Sensitive Detectors

Our signature technology

Athermal phonon sensors at cryogenic temperatures. Transition Edge Sensors read out by SQUIDs

$$E_{tot} = E_r + N_{eh} e V_b = E_r \left(1 + \underline{Y(E_r)} e V_b \right)$$

Very Sensitive Detectors

Our signature technology

Athermal phonon sensors at cryogenic temperatures. Transition Edge Sensors read out by SQUIDs

$$E_{tot} = E_r + N_{eh} e V_b = E_r \left(1 + \underline{Y(E_r)} e V_b \right)$$

Two different modes of operation

iZIP: Low bias voltage (~ 4 V) the original background-free mode → NTL phonons negligible Ratio of ionization to primary phonon signal is unambiguous Interleaved phonon and charge sensors on both sides Provides 10⁶ ER/NR discrimination and surface rejection

HV: High bias voltage (~ 100 V) push to lower thresholds \rightarrow NTL phonons dominate. $E_{tot} \sim E_r \ \underline{Y(E_r)} \ e \ V_b$ The total phonon signal is larger (amplification means lower thresholds), but it is essentially a measure of the charge signal read out through the phonon channel

This will be important later: **Yield** is ~ 0.3 for recoil energies 20-100 keV, but it is energy dependent and not well known at lower energies.

Our signature technology

Athermal phonon sensors at cryogenic temperatures. Transition Edge Sensors read out by SQUIDs

$$E_{tot} = E_r + N_{eh} e V_b = E_r \left(1 + \underbrace{Y(E_r)}_{\mathcal{E}} e V_b \right)$$

Two different modes of operation

iZIP: Low bias voltage (~ 4 V) the original background-free mode → NTL phonons negligible Ratio of ionization to primary phonon signal is unambiguous Interleaved phonon and charge sensors on both sides Provides 10⁶ ER/NR discrimination and surface rejection

HV: High bias voltage (~ 100 V) push to lower thresholds \rightarrow NTL phonons dominate. $E_{tot} \sim E_r \ \underline{Y(E_r)} \ e \ V_b$ The total phonon signal is larger (amplification means lower thresholds), but it is essentially a measure of the charge signal read out through the phonon channel

Lots of experience with this technology

SuperCDMS Soudan Detectors

Ge iZIP (0.6 kg)
7.6 cm diameter and 2.5 cm thick

CDMS Low Ionization Threshold Experiment

CDMSlite Running two iZIPs in HV mode (60-75V)

New SuperCDMS SNOLAB Detectors

Two target materials Ge (1.4 kg) and Si (0.6 kg) 10 cm diameter and 3.3 cm thick

HV detector

TES and collection fin design follows function

iZIP

Double-sided readout with E-field-shaping provides z-dependence and surface rejection

W/Al overlap W TES

No charge readout required.

HV

Optimized for phonon energy resolution and collection efficiency (35% coverage) Improved position resolution and double outer ring to sharpen fiducial cut.

Strategy: Complementary Targets and Multiple Functionality

	Germanium	Silicon
HV	Lowest threshold for low mass DM Larger exposure, no ³² Si bkgd	Lowest threshold for low mass DM Sensitive to lowest DM masses
iZIP	Nuclear Recoil Discrimination Understand Ge Backgrounds	Nuclear Recoil Discrimination Understand Si Backgrounds

Profile Likelihood extends reach beyond Project goals

Plot assumes 4 years of livetime at 80% yield

Project Goals assume Optimum Interval Method Limits assuming no prior knowledge of backgrounds

HV will be bkgd limited within 2 years so we get close to OI goals with 1 month exposure.

To reach full potential, We will perform a profile likelihood analysis (PLR).

The ER/NR discrimination of the iZIPs in Run 1 provides detailed data we need to include backgrounds in the PLR

Pushing even deeper into the nucleon-coupled DM landscape

New Ideas in ER rejection

Hybrid Detector

phonon-only iZIP (piZIP)

We are already running the small 0 V and single eh-sensitive HV detectors

HVeV (Si or Ge, 1 x 1 cm² x 4 mm). 2 equal area QET sensors

R. Agnese et al. Phys. Rev. Lett. 121, 051301 (2018)

- Study charge transport in Si and Ge, minimize charge leakage
- Improve phonon resolution, study single e-h devices
- Physics runs in NEXUS (FNAL) and CUTE ongoing
- Used in the TUNL ionization yield measurements.

A mosaic of these on 2 SuperCDMS towers can get us to the v-fog in 0.5 – 5 GeV range

0V, CPD (cryogenic photon detector) 1 mm thick (45.6 cm²) Si wafer with CDMS phonon readout

- Study phonon resolution and test facility noise performance especially "environmental" sub-keV phonon-only backgrounds
- Phonon resolution in the $\sigma_{\rm pt}$ ~ 1 eV range now.
- New prototype (with new hanging support) may have $\sigma_{\text{pt}} \sim 50$ 100 meV

A mosaic of the current CPDs on 2 SuperCDMS towers can get us to DM masses of 100 MeV now and down to 50 MeV if the new prototype has sub-eV resolution

An example of an upgrade strategy in parallel with Project

CPD upgrade path

- Install one detector housing of 6 CPD for Run 2
 - ~ 1/12 of mass => x 10 higher limit
- If successful, build 2 towers of CPD
 - CPD detectors are cheap!
 - Build new low-bkgd tower structures in parallel with running experiment
- Install CPD towers for Run 3
 - 144 channels for a 4 yr run

Still have another tower for the HVeV mosaic.

Explore Light DM, Dark Photon and Axion-like DM

Improving reach for this science requires sensitivity to 1–100 eV deposited energy, enabled by small bandgaps ~1 eV and excellent energy resolution.

Achieved with SNOLAB HV and 0V, phonon-only detectors

Dark photon and axion-like dark matter in the 1-100 eV range

- Improvements in leakage and resolution drives these limits.
 - 100 times better reach in kinetic-mixing parameter ε
 - 1000 times better reach in g_{ae}.

Light DM in the 1-100 MeV range

Extend cross section by 4 - 5 orders of magnitude.

Stay tuned: Coming next month Snowmass White Paper will have all the new projections

Understanding the Nuclear Recoil Scale at lower energies

Understanding the Nuclear Recoil Scale at lower energies

Neutron beam at the TUNL facility

- Used a "portable" ADR fridge and a Silicon HVeV
- Next campaign in 2022 with a Germanium HVeV

DD generator at NEXUS underground (~300 mwe) FNAL NUMI hall

- Compare HVeV with full-scale SuperCDMS detectors
- Use the NEXUS fridge and backing arrray

Photo-neutron Source: (88Y or 124Sb) gammas on 9Be

Soudan Underground Lab, iZIP run in CDMSlite mode

Developing new neutron capture technique

SNOLAB HVs (Ge and Si) in UMN cryo lab, exposed to PuBe source of thermal neutrons

Measure Y(E_r) in Silicon

Neutron Beam Energy → E_n

- 1.9 MeV pulsed (2.5 MHz) protons on LiF target
- Tune to the ²⁸Si elastic scattering resonance (56 keV)

Neutron scattering angle → E_r

- Backing Array (26 PMTs) at 2 distances
- 3 "lone wolf" to reference large angles
- Also measure TOF and γ backgrounds

Silicon Detector → total phonon energy

- HVeV (0.93 g) with 2 TES channels
- Energy Resolution: $\sigma_p \sim 3 \text{ eV}$
- Charge Resolution: $\sigma_{eh} \sim 0.03$ e/h

$$E_{tot} = E_r + E_{NTL}$$

Image credit: Tom Ren

$$E_r = 2E_{\rm n} \frac{M_{\rm n}^2}{\left(M_{\rm n} + M_{\rm T}\right)^2} \left(\frac{M_{\rm T}}{M_{\rm n}} + \sin^2\theta - (\cos\theta) \sqrt{\left(\frac{M_{\rm T}}{M_{\rm n}}\right)^2 - \sin^2\theta}\right)$$

Y(E_r) in Silicon Results (published soon)

Extract Yield
$$E_{tot} = E_r \left(1 + V(E_r) \frac{eV_b}{\varepsilon_{\gamma}} \right)$$
 for the 6 recoil energies defined by the LS array

Took data sets with V_b = 0V, 20V, 100V, 180V but only the 100 V data is used in this result At V_b =100 V you can easily see quantization

Yield has significant consequences to our low mass reach in Silicon

All our Si project limits were based on a modified Lindhard (green)that passes through Chavarria '16

Measure Y(E_r) in Germanium: SuperCDMS Photo-Neutron Measurement

arXiv:2202.07043

Last set of runs before disassembling Soudan Facility
Illuminated the SuperCDMS array of germanium iZIPs
For each run, one iZIP was in CDMSlite HV mode.

Source	n Energy	Duration	Detector	V _b
¹²⁴ Sb / ¹²⁴ Sb ⁹ Be	24 keV	62 days	T5Z2	70 V
88Y / 88Y 9Be	152 keV	42 days	T5Z2	70 V
88Y / 88Y 9Be	152 keV	38 days	T2Z1	25 V

Measure Y(E_r) in Germanium: SuperCDMS Photo-Neutron Measurement

arXiv:2202.07043

Source

Vacuum

Cryostat

23

(a)

Lead

Likelihood fit to modified Lindhard, varying k-parameters and NR fraction

$$Y_r = \frac{kg(\epsilon)}{1 + kg(\epsilon)}$$

$$k(E_r) = k_{low} + \frac{k_{high} - k_{low}}{E_{high} - E_{low}} (E_r - E_{low})$$

Source	n Energy	Duration	Detector	V _b
¹²⁴ Sb / ¹²⁴ Sb ⁹ Be	24 keV	62 days	T5Z2	70 V
88Y / 88Y 9Be	152 keV	42 days	T5Z2	70 V
88 Y / 88 Y 9 B e	152 keV	38 days	T2Z1	25 V

Y(E_r) in Germanium: Results also indicate suppression wrt Lindhard at a few keV

Linear combination of two k-parameters required for good fit

Inconsistent with Lindhard one-k fit

Uncertainty dominated by statistics and precision of neutron scattering cross sections

Inconsistent with recent Collar measurement.
Is Yield T-dependent?
Or modified by internal field?

SuperCDMS SNOLAB is poised to explore huge swaths of parameter space

The SuperCDMS SNOLAB Project is on track

- Detector fab is complete and SNOLAB infrastructure is well advanced
- Early science is happening now, in coordination with testing and commissioning
- Data taking at CUTE uses same software and shift structure

The Science Program is highly competitive

- The parameter space that SuperCDMS will explore is world-leading and unique
- During the delay, we have
 - made stunning technological advances
 - begun a campaign to measure the nuclear recoil scale at low energies.
- Upgrades using advanced detectors in the final payload will leap-frog our initial reach