

# Converging Storage Layers with Virtual CephFS Drives for EOS/CERNBox

Roberto Valverde Cameselle, CERN IT-ST Dan van der Ster, CERN IT-ST Andreas Peters, CERN IT-ST

26 January 2022





#### Outline

- Introduction & Motivation
- Previous Work
- Our Objectives
- Proof-of-Concept Testing
- Production Testing
- Discussions & Conclusions





## Introduction & Motivation

- The CERNBox service is built on top of EOS Open Storage, CERN's highly scalable storage system initially developed for LHC physics analysis
  - EOS provides today 500 PB of raw storage space
  - Data is persisted using file based replication (RW) or Erasure Coding (WORM) using XFS filesystems on disks
  - Interactive use-cases (mounted directly) require support for file updates
    - currently only supported with file replication
  - A file replication model has generic architectural and operational limitations







## File Storage vs Object Storage

- Intrinsic limitations of file based storage with replication
  - IO performance is equal to that of a single disk
  - Max file size is the free space of the least full disk
    - in nearly full clusters, file appends can fail
  - File rebalancing and failure recovery time increases with file size used
    - problematic for very large (slow) and extremely small files (if many)







- Storing files in Object Storage
  - Each file is split into many chunks
  - IO performance scales with number of chunks / disks
  - File size is limited to the free space of the entire cluster
  - Data rebalancing and failure recovery is parallelized by chunks



## Virtualized Storage Services

- EOS provides a separation of persistency and a (nearly)
   stateless metadata service:
  - Metadata is stored in an HA backend (QuarkDB) and cached in the EOS manager daemon
  - The transition to this model has improved the service KPIs drastically







- By separating persistence from the **data** service we can have a fully virtualized EOS
  - Data Availability, Durability, and Lifecycle mgmt can be delegated to the storage backend
  - EOS IO daemons can be relocated between hosts as long as the storage backend provides concurrent access from several hosts





## **Previous Work**

- At CHEP 2021 we evaluated a new approach to EOS storage:
  - CERN has many years of experience running CephFS for HPC and IT use-cases and has an active role in CEPH project
  - Replacing XFS with CephFS in the EOS storage back-end allows to benefit from Object Storage characteristics and keep EOS high-level functionality
- Evaluating CephFS Performance vs. Cost on High-Density Commodity Disk Servers









Benchmarking the CephFS kernel client.

On an 8-node 100Gig-E cluster it is capable of high throughput performance.









Layered EOS+CephFS introduced some long tail latencies in this high throughput test.

With tuned config it performed as well as the native CephFS backend.







## Objectives

- Explore the benefits of a combined EOS/CephFS solution as a CERNBox backend
- Does it have an impact in reliability, durability, availability, performance?
- Would consolidating on one storage backend save on operations personnel or hardware?
- Can we enable **new use-cases** using this architecture?







## **PoC Evaluation Criteria**

- Reliability / Durability
  - EOS consistency check (fsck) should confirm that data is safely stored on CephFS
- Performance
  - CephFS backend should not negatively impact performance (IOPS, throughput, latency)
- Availability
  - Frontend host failure should have minimal impact given the lack of a secondary EOS replica.
  - Understand how to dimension the frontends







# **PoC Testing Results**

- We ran a microtest suite against the PoC over a 3 month period.
- Three configs: EOS dual replica, EOS single replica, CephFS







# Replica Layout









# Reliability / Durability

- fsck confirmed that adding a CephFS backend did not introduce any data durability issues
- We found an unrelated replication issue EOS-5045







## Performance

 Previous work confirmed that EOS+CephFS can achieve multi-GBps throughputs, but didn't measure interactive workloads







#### Example microtest: Time to write 4MB O\_DSYNC:



Single replica performance is similar.

2x replica had a perf issue which was fixed on Dec 17.







#### Example microtest: Time to untar a small archive (~1000 files)



Single replica performance is similar.







## Availability

- **Data is unavailable** when a frontend virtual FST is down (e.g rebooting or broken)
  - The virtual disk is just a path in the shared / cephfs
  - eos fs mv can be used to reassign that virtual FST to another frontend
- This impacts how many EOS virtual FSTs per frontend box







- When a frontend fails, we need to **redistribute** its virtual disks to the other remaining frontends.
- Operationally it is best if we can use as many other frontends in parallel
  - Ex 1: with 1 virtual FST that single FST is taken over by one other box, whose load now doubles.
  - Ex 2: with 10 virtual FSTs a single frontend failure can be taken over by 10 other boxes, whose load increases by only 10%.
- We choose to use 12 virtual FSTs per frontend box.
- Another approach would be to have idle standby frontends, but this wastes resources.







## **Prod Testing Environment**

- **EOSHOME-iOO** is a production CERNBox instance hosting several thousand users.
- We added a new "CephFS" space:
  - Two virtual FST hosts (CentOS Stream 8, 64G)
- Backed by our large shared production CephFS.
  - Also used by OpenShift, HPC, and many other CERN services.







# **Prod Testing Results**

We enabled the same microtest suite in Dec 2021.



The results roughly match what we observed on the PoC.







• I also moved my home directory onto the CephFS-backed space.







## **Discussion & Conclusions**

- Replacing XFS disks with CephFS completes the storage virtualisation of EOS
  - We expect significant increase in KPIs, similar to the EOS metadata -> QuarkDB transition
- CephFS backend is based on object storage
  - **Fewer limitations** related to performance, file size, and failure recovery
- This brings a much more flexible architecture
  - Delegate reliability, durability, lifecycle mgmt to Ceph (and e.g. Kubernetes)







# Discussion & Conclusions (cont'd)

- What about cost?
  - At the multi-PB scale, CephFS read-write erasure coding should bring substantial savings
  - May also save on operations personnel by consolidating on our existing Ceph infrastructure and lifecycle processes
- Still lots to do:
  - Need experience with real CERNBox user workloads
  - Explore options to automate the EOS storage daemons, e.g.
     with Kubernetes persisent volumes





## THE END

Any Questions?









## Extra slides







## **PoC Testing Environment**

- EOS Namespace Server:
  - 3x physical boxes w/ Xeon Silver 4216, 384GB RAM
- Baseline EOS Diskserver:
  - 3x physical boxes w/ Xeon E5-2650, 64GB RAM, 10Gig-E,
     24x 3TB HDDs
- New "CephFS" EOS Virtual Diskservers:
  - 2x virtual boxes w/ 10 cores, 60GB RAM, 10Gig-E
- Backend CephFS cluster:
  - 3x OSD disk boxes w/ Xeon Silver 4216, 192 GB RAM, 48x
     12TB HDD, 4x 1TB NVMe
  - 1x virtual CephFS metadata server







# PoC Testing Environment

- This gives us two EOS "spaces":
  - default: the traditional EOS storage, for baseline testing
  - cephfs: data stored in a CephFS backend
- We configured three paths in EOS for testing:
  - /homecanary -> default space with 2 replicas
  - /homecanary-1rep -> default space with single replica
  - /homecanary-cephfs1rep -> cephfs space with single replica







