
The Interplanetary File System
A fresh look at distributed storage and delivery

An introduction to IPFS

Dr Yiannis Psaras
Research Scientist
Protocol Labs

You can find a series of video tutorials on IPFS, libp2p and Filecoin at:
https://research.protocol.ai/tutorials/resnetlab-on-tour/

ResNetLab on Tour

https://research.protocol.ai/tutorials/resnetlab-on-tour/

Now: Research Scientist @ Protocol Labs

Before: Senior Lecturer @ University College London (UCL)

Interests: Networks, Security, Internet Architecture, Decentralised
Internet Services, Content Addressable Networks, Edge Computing

Who am I

➔ Web 3.0 & the Decentralized Cloud

➔ Content Addressing

➔ Content Routing

➔ Context Exchange

Agenda

in IPFS

IPFS is a decentralized storage and
delivery network which builds on

fundamental principles of P2P networking
and content-based addressing.

/ipfs/QmW98pJrc6FZ6

IP:120.1.11.22

http://example.com/cat.png

http://10.20.30.40/cat.png

ipfs://QmW98pJrc6FZ6

IP:10.20.30.40

IP:15.25.35.45

location

content

Booming ecosystem of applications

Module:
Welcome to Web 3.0
ResNetLab on Tour

Web 3.0 is the
Read-Write-Trust-Verifiable Web

Web 1.0

Web 2.0

Web 3.0

Internet

IPFS: Distributed Web Protocol

IPLD: authenticated data model & formats

Multiformats: future-proofing formatting rules

libp2p: modular p2p networking library

IPFS uses libp2p, IPLD and Multiformats to provide
content-addressed decentralized storage.

Module:
Content Addressing
in IPFS
ResNetLab on Tour

/ipfs/QmW98pJrc6FZ6

IP:120.1.11.22

http://example.com/cat.png

http://10.20.30.40/cat.png

ipfs://QmW98pJrc6FZ6

IP:10.20.30.40

IP:15.25.35.45

location

content

a

CONTENT ADDRESSING CONTENT DISCOVERY
& ROUTING

CONTENT EXCHANGE

● Anatomy of the IPFS CID
● Chunking
● Linking Chunks

in Merkle DAGs
● From Data to

Data Structures with IPLD

● Routing & Provider
Records

● DHT-based Routing
● Gossip-based Routing

● Bitswap
● GraphSync

MUTABLE NAMES &
MESSAGE DELIVERY

● Dynamic Data
● IPNS
● PubSub
● CRDTs

IPFS Components

CIDs are:
● the most fundamental ingredient of the IPFS architecture

● used for content addressing

● used to name every piece of data in IPFS

● a hash with some metadata

● self describing

Content
Identifier

CIDv0: QmS4ustL54uo8FzR9455qaxZwuMiUhyvMcX9Ba8nUH4uVv

CIDv1: bafybeibxm2nsadl3fnxv2sxcxmxaco2jl53wpeorjdzidjwf5aqdg7wa6u

Anatomy of
a CID

Binary Breakdown

110010010… 10000000000000100111000000000001 00010010

CID Version
Multicodec

Hash
function

sha-256
(0x12)

Length
Multicodec

Actual
Content Hash!CID-V1

How to
interpret
the data

dag-pb
(0x70) 128 | 2

bafybeigdyrzt5sfp7udm7hu76uh7y26nf3efuylqabf3oclgtqy55fbzdi

Visit: cid.ipfs.io

<- IPLD encoding ->

<base>base(<cid-version><multicodec><multihash>)

CIDs are
Immutable links

Deduplication
Identical data can be identified by its address

Self-certification
Content is authenticated by its address

Integrity checking
If the content changes, its address also changes

a

CONTENT ADDRESSING CONTENT DISCOVERY
& ROUTING

CONTENT EXCHANGE

● Anatomy of the IPFS CID
● Chunking
● Linking Chunks

in Merkle DAGs
● From Data to

Data Structures with IPLD

● Routing & Provider
Records

● DHT-based Routing
● Gossip-based Routing

● Bitswap
● GraphSync

MUTABLE NAMES &
MESSAGE DELIVERY

● Dynamic Data
● IPNS
● PubSub
● CRDTs

IPFS Components

Content Addressing
Chunking

● Deduplication
● Piecewise Transfer
● Random Access

Each chunk is individually addressed and
identified by its own hash

File

Chunked File

Chunking

● Deduplication
● Random Access
● Piecewise Transfer

Optimise storage requirements

Content Addressing

File

Chunked File

Optimise bandwidth requirements

Fetch the parts you need only

Chunking
Content Addressing

File

Chunked File

● Deduplication
● Random Access
● Piecewise Transfer

● Deduplication
● Random Access
● Piecewise Transfer

Identify errors without having to
fetch the whole file

Discard parts that arrived in error

Chunking
Content Addressing

File

Chunked File

a

CONTENT ADDRESSING CONTENT DISCOVERY
& ROUTING

CONTENT EXCHANGE

● Anatomy of the IPFS CID
● Chunking
● Linking Chunks

in Merkle DAGs
● From Data to

Data Structures with IPLD

● Routing & Provider
Records

● DHT-based Routing
● Gossip-based Routing

● Bitswap
● GraphSync

MUTABLE NAMES &
MESSAGE DELIVERY

● Dynamic Data
● IPNS
● PubSub
● CRDTs

IPFS Components

Merkle Trees

File Chunks:

UnixFS File:

(merkle-link)
(a hash)

(merkle-tree)

0-200 200-350

0-100 100-200 200-300 300-350

Linking Chunks in a Tree
Content Addressing

File Chunks:

UnixFS File:

(merkle-link)
(a hash)

(merkle-tree-dag) - directed acyclic graph

0-200 200-350

0-100 100-200 200-300 300-350

Merkle DAGs are graph data structures where each node is content-addressed

Visit: dag.ipfs.io

Linking Chunks in a DAG
Content Addressing

Module:
Content Routing
ResNetLab on Tour

VS

Location Addressing vs
Content Addressing

Which server
does this address
correspond to?

<server>

LOCATION ADDRESSING CONTENT ADDRESSING

Who has
file <CID A>?

Sure, I have it
if you want it

Me too!

And me!
Take it!

<fileA>

<fileA>

<server>

The challenge
of content
routing in
P2P networks

Challenges include...

Discovering
peers in the

network

Finding peers
storing the

content

Contacting
these peers to

request the
content

Doing it all in
scalable way!

● There is no central entity orchestrating the storage and
discovery of content.

● There is no central directory to find how to reach every peer in
the network.

● P2P networks present high node churn.
● Thousands of peers and millions of content item!

a

CONTENT ADDRESSING CONTENT DISCOVERY
& ROUTING

CONTENT EXCHANGE

● Anatomy of the IPFS CID
● Chunking
● Linking Chunks

in Merkle DAGs
● From Data to

Data Structures with IPLD

● Routing & Provider
Records

● DHT-based Routing
● Gossip-based Routing

● Bitswap
● GraphSync

MUTABLE NAMES &
MESSAGE DELIVERY

● Dynamic Data
● IPNS
● PubSub
● CRDTs

IPFS Components

Peer Routing

Every peer uses a cryptographic key pair,
for the purpose of

● Identity: unique name in the network
"QmTuAM7RMnMqKnTq6qH1u9JiK5LqQvUxFdnrcM4aRHxeew"

● Channel security (encryption)

Has unique ID in
the p2p network

namespace

Provides
services to
other peers

Must be
“discoverable”

(DHT)

Uses encrypted
communication
channels

Uses services
from other
peers

Must be
“routable”/
reachable

(multiaddress)

The Swarm

The Peer

Content
Routing
Interface in
libp2p/IPFS

● Design goals
○ Reliable: any content can be found
○ Scalable and fast: The performance of queries are not

affected by the size of the network
○ Resistant to node churn and sybil attacks

● Two design approaches
○ DHT-based: libp2p KadDHT
○ Gossip-based: Bitswap, PubSub

● Operations
○ Provide: Make content available for other peers
○ Resolve: Find the peers storing the content
○ Fetch: Fetches content from a provider

a

CONTENT ADDRESSING CONTENT DISCOVERY
& ROUTING

CONTENT EXCHANGE

● Anatomy of the IPFS CID
● Chunking
● Linking Chunks

in Merkle DAGs
● From Data to

Data Structures with IPLD

● Routing & Provider
Records

● DHT-based Routing
● Gossip-based Routing

● Bitswap
● GraphSync

MUTABLE NAMES &
MESSAGE DELIVERY

● Dynamic Data
● IPNS
● PubSub
● CRDTs

IPFS Components

The DHT
● A DHT provides a 2-column table (key-value

store) maintained by multiple peers.

● Each row is stored by peers based on similarity
between the key and the peer ID. We call this
“distance”:

○ A peer ID can be “closer” to some keys
than others

○ A peer ID can be “closer” to other peers.

● The DHT is used in IPFS to provide:
○ Peer routing (PeerID, /ipv4/1.2.3.4/tcp/...)
○ Content Discovery (ContentID, PeerID)
○ IPNS Records (IPNS key, IPNS Record)

Peer 1
(key1, value1)
(key2, value2)

Peer 2
(key3, value6)
(key4, value5)

Peer 5
(key7, value7)

Peer 6
(key5, value3)

Peer 3
(key5, value5)

Peer 4
(key4,value4)

● IPFS uses an adaptation of the Kademlia DHT:
○ 256 bits address space - SHA256
○ Distance between two object through XOR

■ distance(a, b) = a XOR b = distance(b,a)
○ It uses tree-based routing (figure)
○ The binary tree is divided into a series of

successively lower subtrees. Each contain a
k-bucket (list of nodes with that prefix)

○ Initiates parallel asynchronous queries to
avoid waiting for offline nodes.

Inspired by Kademlia DHT

Providing
Content

Put content hash H

Lookup k
closest peers
to SHA256(H)

Put provider
record at
those k

closest peers

Periodically
re-publish to

accommodate
churn

● Content is not replicated or uploaded to any external server.
The content stays local on the user’s device.

● It is the Content Identifier (CID) together with a pointer to the
user’s machine that is made known to the network.

○ This tuple is called the provider record and is added to 20 peers.
■ Provide records expire (i.e. they’re not provided by peers) after

24 hours to account for provider churn.
■ Provider records are re-published after 12 hours (by providers) to

account for peer churn (i.e. make sure close to 20 peers still
store the record).

● Content Discovery (Resolve): Contact k closest peers to the CID. If they have the object
they send it back, if not they respond with the provider record.

● Peer Discovery: A peer may not know the multiaddress for the peer in the provider
record so it needs to perform a new DHT query to find the peer’s network addresses.

○ Routing tables refresh every 10 min. This usually determines if a new walk is
needed to get the peer’s contact information.

● Peer Routing: Use the multiaddress of the provider to contact it.

Resolving
Content

Get content hash H

Lookup k closest
peers to

SHA256(H)

Request record to
peers if they have

it.
(Bitswap)

Continue until
lookup

terminates.

Multi-round iterative lookups

Pros and Cons
of using a DHT

● Fault tolerant. Resistance to churn.
● Finds peers 100% probability (as long as they are reachable).
● Ensures freshness of the routing information.

● Can be slow in network with a large number of peers.
○ Lookup O(logN); may require several hops to find peers.

● DHT proximity ≠ Spatial proximity

IP Network

Overlay
Network

Module:
Content Exchange
ResNetLab on Tour

CONTENT ADDRESSING CONTENT DISCOVERY
& ROUTING

CONTENT EXCHANGE

● Anatomy of the IPFS CID
● Chunking
● Linking Chunks

in Merkle DAGs
● From Data to

Data Structures with IPLD

● Routing & Provider
Records

● DHT-based Routing
● Gossip-based Routing

● Bitswap
● GraphSync

MUTABLE NAMES &
MESSAGE DELIVERY

● Dynamic Data
● IPNS
● PubSub
● CRDTs

IPFS Components

a

● IPFS asks Bitswap for blocks
● Bitswap fetches blocks from the network

● Message-oriented protocol
○ Requests: WANT-HAVE / WANT-BLOCK / CANCEL
○ Responses: HAVE / BLOCK / DONT_HAVE

IPFS

Blockstore

Bitswap

The IPFS Example

Bitswap
Operation

Root Block

want-have CID1?

Peer A Peer B Peer C Peer D

have CID1 ✓

want-block CID1 ▫

block (CID1) ▧

have CID1 ✓
have CID1 ✓

Discovery:
Ask who has
CID1

Peer B has
CID1

Request block
from Peer B

Peer C & D
have CID1

Peer B
sends block

● HAVE message
○ Sometimes we don’t want a

whole block
○ We just want to know who has

a block (eg for discovery)

● Two kinds of WANT messages
○ WANT-HAVE
○ WANT-BLOCK

● If the block is small enough,
reply with BLOCK instead of
HAVE

Subsequent
Requests

Peer A sends
either

▫ want-block
? want-have

for each CID
that it wants

▫▫▫?
????

???▫
▫▫??

????
??▫▫

▧▧✗✓
✓✓✗✓

✗✓✓▧
▧▧✓✓

✗✓✓▧
▧▧✓✓

Peers B, C & D
respond with

▧ Block
✓ HAVE
✗ DONT_HAVE

for each CID

Peer A Peer B Peer C Peer D

● DONT_HAVE message
○ Allows peer to indicate that it

does not have a block

● Requests:
○ WANT-BLOCK
○ WANT-HAVE

● Respond with combination of
○ HAVE, DONT_HAVE
○ BLOCK

IPFS is the result of combining multiple blocks
commonly used to build distributed applications into
a distributed-storage application.

IPFS uses libp2p, IPLD and Multiformats to provide
content-addressed decentralized storage.

THE IPFS
STACK

libp2p is the peer-2-peer
network-layer stack that
supports IPFS. It takes
care of host addressing,
content and peer
discovery through
protocols and structures
such as DHT and pubsub.

LIBP2P

IPLD (InterPlanetary
Linked Data) provides
standards and formats to
build Merkle-DAG
data-structures, like
those that represent a
filesystem.

IPLD

Multiformats provides
formatting rules for
self-describing values.
These values are useful
both to the data layer
(IPLD) and to the network
layer (libp2p)

Multiformats

IPFS

Booming ecosystem of applications

➔ Unlimited free access to the content:
https://research.protocol.ai/tutorials/resnetlab-on-tour/

➔ 5 Core Modules and over 8 Elective Modules to be released over time

➔ Core Modules designed to equip you with everything in order to understand
◆ Content Addressing
◆ Content Routing
◆ Exchange of Content
◆ Mutable Content

➔ If you are an event organizer and/lecturer, feel empowered to take away the materials
and organize your own local event! Let us know if you need help.

ResNetLab On Tour 📼

https://research.protocol.ai/tutorials/resnetlab-on-tour/

➔ Docs: https://docs.ipfs.io
➔ Video tutorials: https://research.protocol.ai/tutorials/resnetlab-on-tour/
➔ Interactive Coding and Non-Coding Tutorials: https://proto.school
➔ Discussion Forums:
◆ IPFS: https://discuss.ipfs.io
◆ libp2p: https://discuss.libp2p.io

A Few Pointers

https://docs.ipfs.io
https://research.protocol.ai/tutorials/resnetlab-on-tour/
https://proto.school
https://discuss.ipfs.io
https://discuss.libp2p.io

➔ An arsenal of projects and platforms for experimentation, research and
development.

➔ A great community to collaborate with.

➔ Top quality research teams to inspire and get inspired from.

➔ Many collaboration opportunities.

➔ Exciting challenges to overcome.

➔ Lots of open positions and funding opportunities.

The Ecosystem

resnetlab@protocol.ai https://github.com/protocol/ResNetLab/discussions

Get in touch!
yiannis@protocol.ai

