

ScienceBox

- EOS: Storage backbone for LHC + Physics data, and CERNBox
- CERNBox: Sync&Share for Personal and Project Files
- SWAN: Data Analysis Platform with Interactive Jupyter Notebooks
- CVMFS: Software stacks for LHC experiments and scientific analysis

ScienceBox – Raison d'être

- Facilitate distribution of successful technology operated at CERN
 - Scalable storage, Sync & Share, Integrated Analysis Platforms, ...
 - High Energy Physics sites, NRENs, EU-project collaborators, partnering institutions
- Increasing interest in Data Management and Analysis tools for Open Science
 - ≥ 2PB of particle physics data and tools to explore them → http://opendata.cern.ch/

- Future opportunities for broader adoption
 - ScienceMesh interest in services beyond EFSS
 - Worldwide LHC Computing Grid Tier-2 sites

ScienceBox Project Epiphany

- First ever replica of CERN production services in containers
- Automated deployment in Docker Compose, single-host

ScienceBox – Use Cases and Technology

JRC

Infrastructure

Technology

2021 - ScienceBox Reboot

Goals of Reboot: 1. Use modern, widely-adopted container technologies,
 2. Improve maintainability, 3. Ease contributions to the package

ScienceBox 2.0

- Goals of Reboot: 1. Use modern, widely-adopted container technologies,
 - 2. Improve maintainability, 3. Ease contributions to the package

Maintainability

- Align and keep in sync ScienceBox with CERN production
 - ✓ Improvements and new features at CERN immediately available to ScienceBox
- Consolidate containerization efforts at CERN into Helm charts
- ScienceBox described as a hierarchical collection of charts
 - Re-use charts developed and maintained by EOS, CERNBox, SWAN, CVMFS
 - ✓ Add the glue for stand-alone deployments

ScienceBox 2.0 - Helm Charts to the Rescue

ScienceBox 2.0

Goals of Reboot: 1. Use modern, widely-adopted container technologies,
 2. Improve maintainability, 3. Ease contributions to the package

- Modularity and Ease to contribute
 - Allow for deployment of single components, e.g., EOS
 - Facilitate addition and integration of other services
 - Each chart is a blueprint of service interfaces with own lifecycle and release process
 - New services can be packaged and added to ScienceBox by expressing a dependency on their charts

ScienceBox 2.0 - Modular Architecture

ScienceBox 2.0 – Where are we now?

- ▼ EOS charts ready → https://github.com/cern-eos/eos-charts
- SWAN charts ready → https://github.com/swan-cern/swan-charts
- ScienceBox glue (IDP, LDAP, extra config, ...) ready → https://github.com/sciencebox/charts

- © CERNBox integration → Ongoing
- Get Started guide and Documentation → Ongoing
- Validation tools, self-testing, multiple OS support → To start

ScienceBox 2.0 – Road Test

1. EOS Helm charts actively used for testing commits and new releases

ScienceBox 2.0 – Road Test

- 1. EOS Helm charts actively used for testing commits and new releases
- 2. CMS Machine Learning on GPUs
 - SWAN + EOS deployed on AWS EKS
 - NVidia Tesla V100 GPUs
 - ✓ On-demand, dynamically-scalable

Where to Find ScienceBox

ScienceBox

- https://sciencebox.web.cern.ch/
- sciencebox-talk@cern.ch

Code repositories

- ScienceBox Organization on GitHub https://github.com/sciencebox/
- Minikube-based deployment https://github.com/sciencebox/mboxed

More on ScienceBox services

{eos,cernbox,swan,cvmfs}.web.cern.ch

Where to Find ScienceBox

- ScienceBox
 - https://scien
 - > sciencebox
- Code reposi
 - ScienceBo
 - Minikube-b.
- More on Sc
 - > {eos,cernbc

Discussion welcome!

nboxed

Samuel, Artiz, Fabio, Abhishek, Diogo, Riccardo, Krishnan

Thank you!

ScienceBox 2.0

Enrico Bocchi enrico.bocchi@cern.ch

Backup Slides

Why ScienceBox

- Growing interest in CERN cloud software from external collaborators
 - High Energy Physics sites
 - National Research and Education Networks
 - European projects collaborators

- Facilitate distribution outside CERN
 - Simplified installation leveraging on container technologies
 - Flexible and scalable deployment with container orchestration
- Disposable deployment for development at CERN
 - Software updates, new functionalities, ...

ScienceBox Scalability

- Kubernetes: Deploy, orchestrate, and manage containers in a cluster
- It provides means to horizontally scale applications
 - ✓ Deployment, StatefulSet, Horizontal Pod Autoscaler, LoadBalancer on Services, ...
- Storage Extend EOS capacity
 - Add machines with additional storage
 - Replicate File Storage Server containers

- Computing Sustain concurrent SWAN sessions
 - ✓ Need of multiple cluster nodes where to spawn Single-user Jupyter Servers
 - Replicate EOS and CVMFS containers for SWAN sessions

TOTEM Analysis on Commercial Cloud

RDataFrame

- Interface for declarative analysis, introduced in ROOT 6.14 (2018-07-27)
- Implicit parallelization
- Better utilization of multicore resources

```
ROOT::EnableImplicitMT(); Run a parallel analysis

ROOT::RDataFrame df(dataset); on this (ROOT, CSV, ...) dataset

auto df2 = df.Filter("x > 0") only accept events for which x > 0

.Define("r2", "x*x + y*y"); define r2 = x² + y²

auto rHist = df2.Histo1D("r2"); plot r2 for events that pass the cut

df2.Snapshot("newtree", "out.root"); write the skimmed data and r2

to a new ROOT file
```


TOTEM Analysis on Commercial Cloud

- Allow interactive analysis with ROOT RDataFrame + SWAN + Spark
 - RDataFrame: Interface for declarative analysis with implicit parallelism

- Use Spark cluster with no changes to the code
- Monitor Spark jobs from SWAN

TOTEM Analysis on Commercial Cloud

- TOTEM Analysis Dataset:
 - > 4.7 TB, 1153 files, 2.8B events
 - Imported via xrootd, results synchronized with CERNBox
- Reduced processing time
 - Wall-clock down to ~2m
 - Optimal at ~750 cores
- Validated Physics Results

Big Data Tools and Cloud Services for High Energy Physics Analysis in TOTEM Experiment - V. Avati et al.

https://ieeexplore.ieee.org/document/8605741

ScienceBox

11111

One-Click Demo Deployment

- Single-box installation
- Download and run in 5 minutes
 https://github.com/cernbox/uboxed

Production-ready Deployment

- · Scale out service capacity
- Tolerant to node failures

https://github.com/cernbox/kuboxed

ScienceBox Architecture

ScienceBox Project Epiphany

- Dockerfiles, container images, configuration scripting
- Automated deployment in Docker Compose, single-host
- First ever replica of CERN production services in containers

ScienceBox Project Epiphany

ScienceBox in Kubernetes for Education

- Scalable deployment on Kuberentes-managed clusters
- Resources describe in k8s YAMLs

CERN News, Apr 2020

- Free-access remote-learning platforms for EU students
- Open Up2U initiative, March 2020
- Hosted on AWS, funded by GÉANT

2021 - ScienceBox Reboot

Limitations of early ScienceBox

- Maintainability over time
 - Chase puppet-managed production
 - Manually build container images upon new software releases
- 2. Docker Compose and Kubernetes on parallel tracks
 - Changes to be implemented in both worlds
- 3. Many hacks for bootstrap and configuration
 - ✓ Container's ENTRYPOINT is some hundred bash lines
 - √ (sometimes) 2+ daemons running in one container

ScienceBox 2.0

- Goals of Reboot: Use widely adopted CNCF technologies, improve maintainability, make use of modern containers tooling
- Major clean-up of bootstrap hacks:

```
command: ["/bin/bash", "/root/start.sh"]

Magic custom scripts

Plain execution of binary

command: ["/usr/bin/ocis", "idp"]
```

- Adopt k8s best practices (InitContainers, ConfigMaps, custom resources, ...) and advanced capabilities:
 - Health-check probes, Node Selectors, Node Affinity/Anti-Affinity, Persistent Volumes Claims, Ingress and Load Balancers, etc.

ScienceBox 2.0 – Helm Charts to the Rescue

ScienceBox is described as a collection of Helm charts

- Re-use charts from main services EOS, CERNBox, SWAN, CVMFS
- Add the glue for stand-alone deployments
- Allow for integrations more easily

```
name: sciencebox
type: application
version: 0.0.1
description: The chart to deploy and configure ScienceBox

#
dependencies:
- name: eos
  version: 0.1.0
  repository: "https://registry.cern.ch/chartrepo/eos"
- name: swan
  version: 0.0.5
  repository: "https://registry.cern.ch/chartrepo/swan"
- name: ocis-idp
  version: 0.0.4
  repository: "https://registry.cern.ch/chartrepo/sciencebox"
```


ScienceBox 2.0 - Helm Charts to the Rescue

ScienceBox 2.0 - Modular Architecture

ScienceBox 2.0

Goals of Reboot: 1. Use modern, widely-adopted container technologies,
 2. Improve maintainability, 3. Ease contributions to the package

- Modern technologies for one-click demos
 - ➤ Get rid of Docker Compose and Kubernetes duality → Use k8s APIs everywhere
 - Deployment on k8s-managed clusters natively via Helm
 - ✓ Use minikube (or kind) for single-host demos and leverage on Helm again
 - 1. helm repo add sciencebox https://registry.cern.ch/chartrepo/sciencebox
 - 2. helm install sciencebox sciencebox/sciencebox

