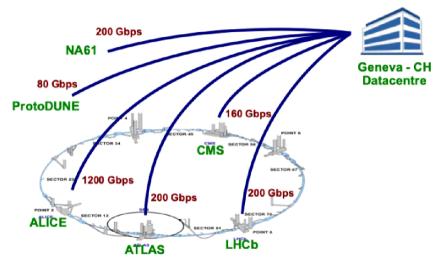


The CERN Tape Archive (CTA) : Archival Storage for Scientific Computing

Dr. Michael Davis

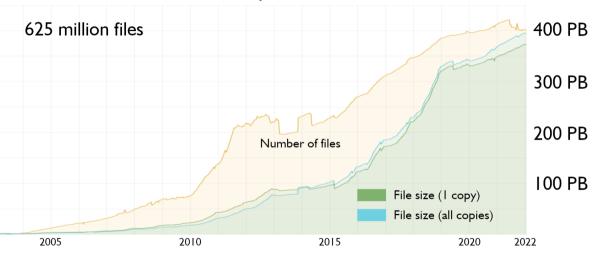
CERN, IT Department, Storage Group



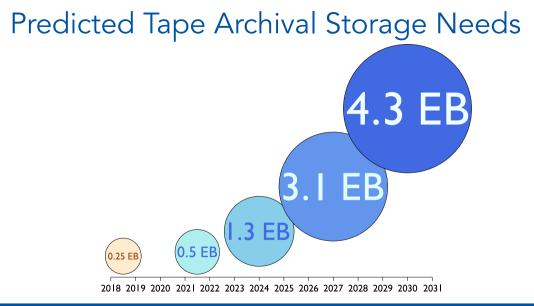
CERN/LHC Data Archival

- All LHC physics data—400 PB—is stored on tape in the CERN Data Centre, Geneva (Tier–0)
- Additional copies of the data are distributed across 13 national computing centres (Tier-1)
- Tier-1s also provide tape archival storage

CERN Tier-0 Data Rates (2022-2025)

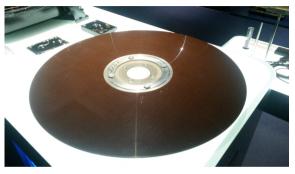


Custodial copy is archived on tape



Physics Data on Tape

Why use tape? Isn't it obsolete?



CERN Data Storage in the 1970s

140 MB 9-track tape (1974)

10 MB disk platter from CDC 7638 Disk Storage Subsystem (1974)

Tape and disk have evolved in step

IBM TS1160 Tape Drive 20 TB capacity

WD DC HC 530 Hard Drive 14 TB capacity

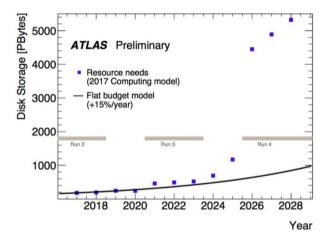
Comparing tape and disk				
	Таре	Disk		
Data transfer rate	400 Mb/s	200 Mb/s		
Positioning type	Fast Sequential Access	Fast Random Access		
Average positioning time	30 seconds (610 m @ 12 m/s)	5 milliseconds		
Latency to first byte	A few minutes	5–10 milliseconds		

Advantages of Tape : Reliability and Data Security

- Two heads are better than one : read after write verification
- No data loss if a drive fails
- Immutable files
- Air-gap security
- Long media lifetime (30+ years)

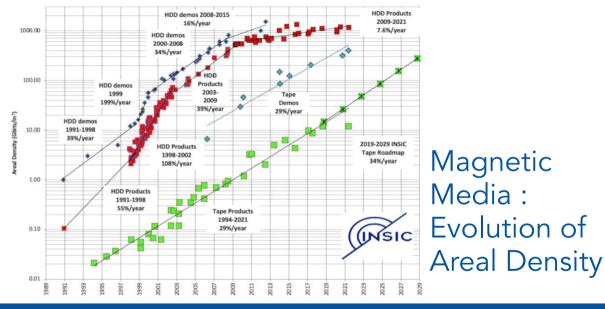
Advantages of Tape : Energy Efficiency

Hard disks are always on. They constantly consume power and generate heat.

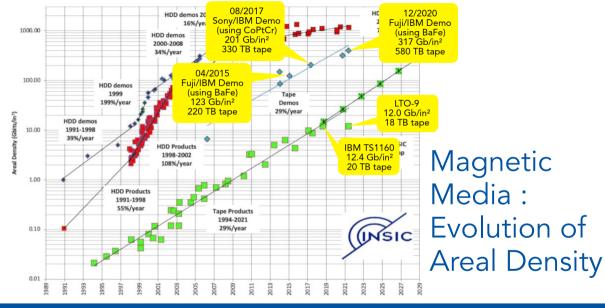

- Expensive to run
- CERN Tier–0 Data Centre is at the limit of how much power and cooling it can deliver (3.5 MW)
- Disk storage requires power and cooling

Tape cartridges don't consume any power when they are not mounted in a drive.

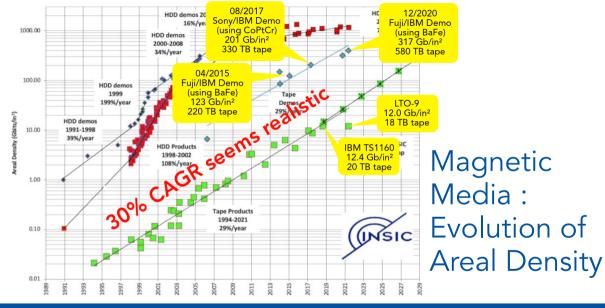
Tape capacity can be increased without requiring additional power

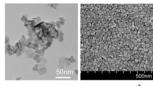


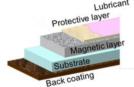
Advantages of Tape : Cost!

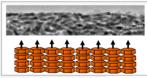


- Storage needs are increasing exponentially
- Budget is not increasing to match needs
- Tape storage is 3–5× cheaper than disk storage









The Outlook for Tape Technology

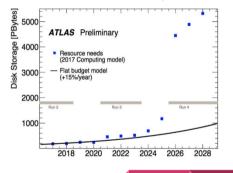
New Advanced Materials

- Very fine magnetic particles
- Smooth surfaces with low friction
- 3D stacking of magnetic particles

Disk technologies are pushing the limits of storage density. Tapes have plenty of room to improve capacity.

 The cost advantages of tape will increase over time

High-Luminosity LHC (2029–32)



Hi-Lumi LHC : Data Carousel Store data for **online analysis** on tape

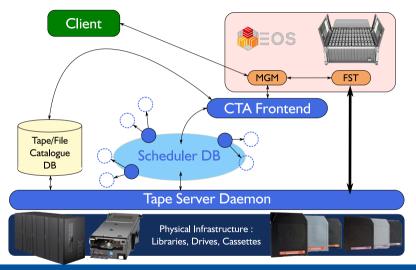
Data storage challenge of HL-LHC :

- → 'Opportunistic storage' basically doesn't exist
- → Format size reduction and data compression are both long-term goals, require significant efforts from the software and distributed computing teams
- → Tape storage is 3~5 times cheaper than disk storage, increasing tape usage is a natural way to cut into the gap of storage shortage for HL-LHC

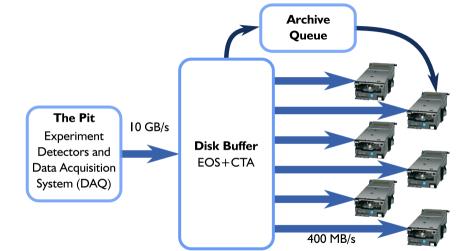
'Data Carousel' R&D \rightarrow to study the feasibility to use tape as the input to various I/O intensive workflows.

The Archival Storage Solution from CERN IT Storage Group

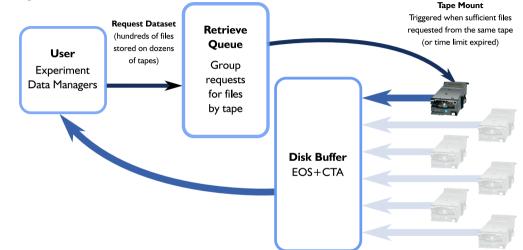
EOS+CTA : "Best of Both Worlds"


- CTA is the tape back-end to EOS (CERN's high-performance disk system)
- Interface, file operations and disk pool management provided by EOS
- Scheduling and tape operations provided by CTA

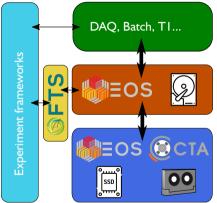
EOS+CTA : "Best of Both Worlds"			
Function	Provided by		
File Metadata Operati	ons EOS (MGM/XRootD)		
Namespace	EOS (QuarkDB)		
Disk Buffer for Staging	EOS (FST)		
Tape File Metadata Op	os CTA (Frontend)		
Archive/Recall Reques	ts CTA (Scheduler DB)		
Tape File Catalogue	CTA (Catalogue DB)		
Tape Operations (libra drives, cassettes)	ries, CTA (Tape Server)		



EOS+CTA Architecture



Physics Data Flow : Archival



Physics Data Flow : Retrieval

EOS for Analysis vs. EOS for Staging "Big EOS" (Analysis)

HDD icon: https://commons.wikimedia.org/wiki/File:Hard-drive.svg SSD icon: https://commons.wikimedia.org/wiki/File:Ssd.svg Tape icon: https://commons.wikimedia.org/wiki/File:Tape_cinta_casette_backup.svg

- Tens of PB of storage for physics jobs and staging to Tier–1s.
- File replicas have a long lifetime.
- Spinning disks.
- "Little EOS" (Staging)
 - Small buffer for copying files to/from tape.
 - File replicas have a very short lifetime.
 Deleted as soon as tape copy exists (archival) or copied to "Big EOS" (retrieval).
 - SSDs: reduce contention and give the best price/performance ratio.

Complementary roles of Disk and Tape

	Disk	Таре
Use Case	Online : Data Analysis	Offline : Long-Term Archival
Drives	110 000 disks (85% HDD/15% SSD)	145 tape drives (in 5 libraries)
Media	—	32 000 tape cartridges
Capacity	Nominal capacity 490 PB	Capacity 460 PB but can be easily extended
	Effective capacity is lower due to redundancy	Currently $pprox$ 395 PB on tape (625 million files)

Beyond CERN : CTA at other sites

- Wide diversity of tape software deployed at Tier-1 sites, consolidation likely in coming years
- Increasing license fees for commercial alternatives/ risk of lock-in
- EOS+CTA is Free and Open Source Software (GPLv3) https://cta.web.cern.ch
- Active and growing CTA Community https://cta-community.web.cern.ch/

Summary

- Tape is the best currently-available technology for archival storage, in terms of reliability, stability over long periods of time and cost
- Power and cooling constraints make it difficult to add more disk storage capacity; tape storage capacity can easily be increased
- Cost benefits over disk storage are significant and look set to increase over the next decade
- Storage needs are growing but budgets are flat
 - The CERN physics archive is 400 PB but will soon grow to 1 EB
 - Data retrievals already exceed 1 EB/year
 - The storage demands of HL-LHC will mean more data on tape and new tape workflows
- CERN is investing in tape as its primary archival storage medium for LHC Run–3 and Run–4

