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fIntroduction (Ionization only detectors)

ER : Nuclear Recoil energy.
EI : Ionization (visible) energy [keVee].

Using dimensionless units (ε = 11.5E (keV)/Z7/3 ),

quenching =
total ionization energy

total deposited energy
= fn =

η̄

εR

where η̄ and εR are the ionization energy and the total recoil energy.

Energy u is lost to some disruption of the atomic bonding:
εR = ε+ u. The ion moves with a kinetic energy ε.
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fBasic integral equation and approximations

(Tn : Nuclear kinetic energy and Tei electron kinetic energy.)

∫
dσn,e︸ ︷︷ ︸

total cross section

ν̄
(
E − Tn −

∑
i

Tei

)
︸ ︷︷ ︸

A

+ ν̄ (Tn − U)︸ ︷︷ ︸
B

+ ν̄(E)︸ ︷︷ ︸
C

+
∑
i

ν̄e (Tei − Uei )︸ ︷︷ ︸
D

 = 0 (1)

Lindhard’s (five) approximations

I Neglect contribution to atomic motion
coming from electrons.

II Neglect the binding energy, U = 0. (Now
taken into account)

III Energy transferred to electrons is small
compared to that transferred to recoil ions.

IV Effects of electronic and atomic collisions
can be treated separately.

V Tn is also small compared to the energy E .

Y.Sarkis (ICN) Phys. Atom. Nuclei 84, 590–594 (2021) Magnificent CEνNS 4 / 20



5/20

Simplified equation with binding energy

Relaxing approximations II, III and V.

Considering U constant, Lindhard Se = kε1/2.

Nuclear stopping dσn(t) with t = ε2 sin2(θ/2).

We solve for ν̄ then η̄ = εR − ν̄ and, fn = η̄/εR .

(Y. Sarkis et al, Phys. Rev. D 101, 102001 (2020))

− 1

2
kε3/2ν̄′′(ε) + kε1/2︸ ︷︷ ︸

Se : Lindhard

ν̄′(ε) =

∫ ε2

εu

dt
f
(
t1/2

)
2t3/2︸ ︷︷ ︸
dσn

[ν̄(ε− t/ε) + ν̄(t/ε−u)− ν̄(ε)]

(2)Threshold at εthresholdR = 2u.

Inter-atomic potential dependent f (t).

e.g T.F., Moliere, AVG and Ziegler

This work includes improvements to Se , U and ν̄−equation.
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fStraggling

Straggling Ω2 = 〈δE − 〈δE 〉〉2, is an inherent feature of stopping.

In adimensional units2: dΩ2

dρ ≡W = C2

πa2

∫ E
0 T 2

nσ(Tn)dTn.

Straggling appears when approximation (III) is relaxed up to second
order in (ΣiTei ).

Assuming a general electronic stopping power Se(ε), the
integro-differential equation can be written,

−1

2
εSe(ε)

(
1 +

W (ε)

Se(ε)ε

)
ν̄ ′′(ε) + Se(ε)ν̄ ′(ε) =∫ ε2

εu
dt

f
(
t1/2

)
2t3/2

[ν̄(ε− t/ε) + ν̄(t/ε− u)− ν̄(ε)],

(3)

Beyond than using the ratio ξ(ε) = Se(ε)/Sn(ε) as a measure of the
energy dissipation, consider by Lindhard and Bezrukov.

2C = 11.5/Z 7/3[ 1
keV

]
Y.Sarkis (ICN) Phys. Atom. Nuclei 84, 590–594 (2021) Magnificent CEνNS 6 / 20



7/20

fHigh energy effects (> 10 keV) for Se(ε)

§ Bohr Stripping

Electrons can be lost according to
momentum transferred.

The effective number of electrons
obeys Z † ≈ Ze−v/Z

2/3v0 .

Se ∝ Z †, this leads to damping.

| Se vs data

§ Z oscillations

When the ion charge changes,
the transport cross section
changes.

Phase shift is needed appear to
maintain neutrality of electron
Fermi gas.

| Z oscillation for Si.
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fLow energy effects for Se

§ Coulomb repulsion effects

At low energies Se departures from velocity proportionality.

Colliding nuclei will partially penetrate the electron clouds.

Se = Nmv

∫ ∞
0

vFσtr (vF )NedV → Nmv

∫ ∞
R

vFσtr (vF )NedV

R distance closest approach

Three models will be considered; Tilinin3, Kishinevsky4 and Arista5

Models change details of the inter-atomic potential.

Hence affect f (t1/2) and Se at low energies.

3I.S.Tilinin Phys. Rev. A 51, 3058 (1995)
4Kishinevsky, L.M., 1962, Izv. Akad. Nauk SSSR, Ser. Fiz. 26, 1410.
5J.M. Fernández-Varea, N.R. Arista, Rad. Phy. and C.,V 96, 88-91, (2014),
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Low energy effects for Se

§ Electronic stopping power

Computed for T.F., Ziegler, Moliere
and Average inter-atomic potentials.

| Se/
√
ε for Tilinin model computed with

four different inter-atomic potentials

§ Binding energy

Frenkel pair creation energy.

Atomic binding with T.F theory.

| Variable binding energy
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fResults (Si)

Figure: Silicon QF model compare between Sarkis 2020 with constant binding and
with variable binding, straggling low and high energy effects.
∗ For more details see G. Ferández Moroni & B. Cervantes Vergara
(CONNIE) talk at session CEνNS Experiments.
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fResults (Ge) with Collar recent data

For Ge study we have to consider a geometrical factor, mentioned
by Tilinin and only significant for high Z (Z > 20).

Figure: Germanium QF model with straggling, geometrical factor, low and high
energy effects.
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fConclusions

1 Considering a variable binding energy and Coulomb repulsion
effects allow us to compute the QF an order of magnitude lower
than our previous work ( down to ≈ 40 eV).

2 We incorporate corrections due to electronic straggling in the Int.
Diff. Eq.

3 For silicon Coulomb effects allow us to fit the data and have a
threshold near Frenkel-pair creation energy.

4 For germanium our model shows potential to explain recent
measurements 6.

5 Much work can be done from here, e.g directional quenching
factor, straggling for ν̄, higher moments study, etc.

6J.I.Collar, et al, PRD 103,122003 (2021)
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aBackup
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5 Si QF models-potentials
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5 Ge QF models-potentials
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5 Tilinin geometrical factor

Tilinin argue that for non small angles or a general trajectory of the ion
there should exist a geometrical factor:

dχρdρdz ′ =
[
1 + (f ′z (θ))2

]1/2
dχρdρdz . Tilinin made a raw

approximation to evaluate the angle

θ ∼ Z1Z2

(
Z

2/3
1 + Z

2/3
2

)−1/2 (
2e2/a0

)
/E ,

with θ < 1. Is full fill when the energy is E < 67 eV for Si and for Ge
E < 190 eV. As expected for Si the limit is very reasonable and in the order
of magnitude of the binding and Tilinin model can be justified to be use.
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Many experiments that rely on quenching factors
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Nuclear recoil in a pure material

Suppose that the ion recoils from the interaction with an energy ER , after
recoiling with an incident particle (e.g., a neutrino).

Energy U is lost to some disruption of the atomic bonding, then
ER = E + U, then the ion moves with a kinetic energy E .

The moving ion sets off a cascade of slowing-down processes that dissipate
the energy E throughout the medium.
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Lindhard’s model

Lindhard’s theory concerns with determining the fraction of ER which
is given to electrons, H, and that which is given to atomic motion, N,
with ER = N + H.

Defining reduced dimensionless quantities,
εR = cZER , η = cZH, ν = cZN where cZ = 11.5/Z 7/3keV.

This separation is written as εR = η̄ + ν̄ (“average”).

The quenching factor (fn) for a nuclear recoil is then defined as the
fraction of ER which is given to electrons (u = cZU):

fn =
η̄

εR
=
ε+ u − ν̄
ε+ u

(4)

When u=0 one recovers the usual definition.
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