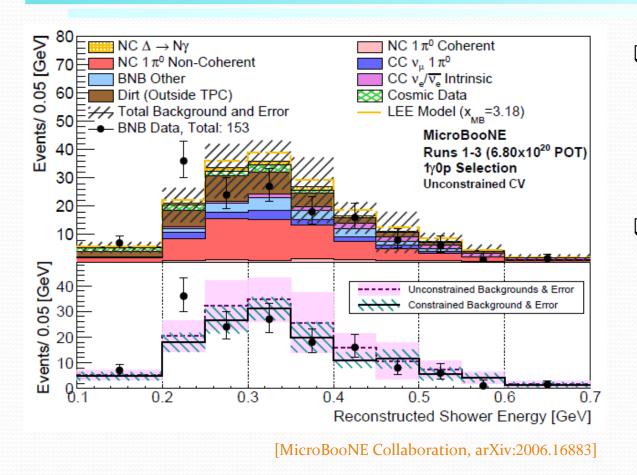

A DM Interpretation of the MiniBooNE Excess and Its Implications in CEvNS Experiments

Doojin Kim (doojin.kimATtamuDOTedu) Magnificent CEvNS, October 7th, 2021

In collaboration with Bhaskar Dutta, Adrian Thompson, Remington Thornton, Richard Van de Water, to appear soon

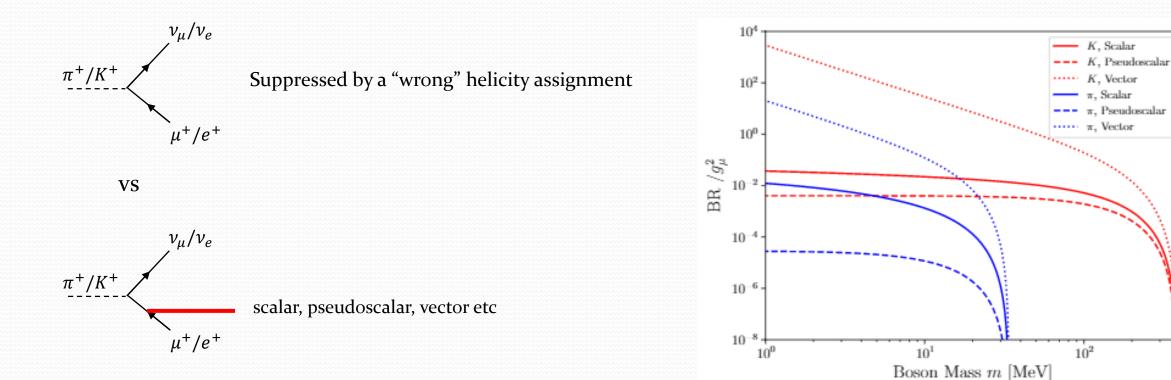
MiniBooNE Low Energy Excess


- \Box An observational motivation of new physics (4.8 σ)
- Numerous explanations, mostly involving neutrino-sector
 new physics [Karagiorgi, Djurcic, Conrad, Shaevitz, Sorel (2009); Collin,
 Arguelles, Conrad, Shaevitz (2016); Giunti, Lavender (2011); Gariazzo, Giunti,
 Lavender, Li (2017); Kopp, Maltoni, Schwetz (2011); Doring, Pas, Sicking, Weiler
 (2018); Dutta, Ghosh, Li (2020), and many more]
- Interpretations with dark-sector new physics (mostly coming from neutral mesons) less favored because off-target mode measurements [MiniBooNE DM Collaboration, arXiv:1807.06137] show null signal.

We propose an idea of reinstating the dark-sector scenarios

for the MB excess (see also Adrian Thompson's talk).

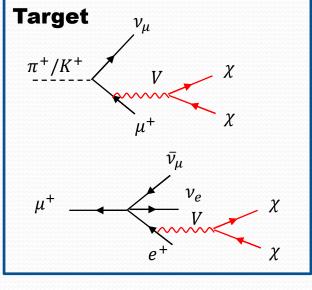
Doojin Kim, Texas A&M University


Recent MicroBooNE Result and MiniBooNE Excess

□ The recent MicroBooNE result constrains NC $\Delta \rightarrow N\gamma$ event rates more stringently, supporting that the MB excess requires a new physics interpretation!

 The MicroBooNE data may not be sensitive enough to the MB excess, yet, because of (~3 times) smaller
 POTs, (~8 times) smaller detector volume, (~5 – 6 times) smaller efficiency.

Dark-Sector Particles Sourced by Charged Mesons



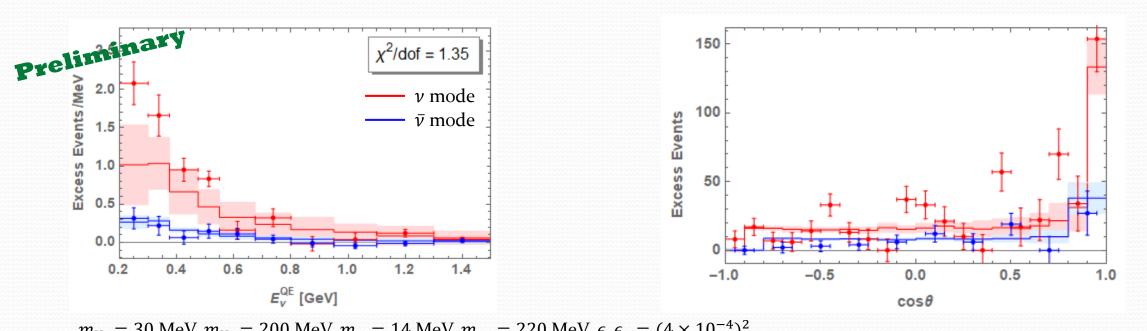
By adding the third particle, the helicity suppression can be evaded, i.e., 3-body decays can be hugely enhanced. The decay to a massive vector is even more enhanced due to the longitudinal polarization. [e.g., Carlson, Rislow, arXiv:1206.3587]

A Dark Matter Interpretation for the MiniBooNE Excess

 $-\mathcal{L}_{V,\text{int}} \supset e(\epsilon_1 V_{1,\mu} + \epsilon_2 V_{2,\mu}) J_{\text{EM}}^{\mu} + (g_1 V_{1,\mu} + g_2 V_{2,\mu}) J_D^{\mu} + (g_1' V_{1,\mu} + g_2' V_{2,\mu}) J_D^{\prime \mu}$

[See Adrian Thompson's talk for (pseudo)scalar scenarios]

Scattering may happen through an exchange of a different mediator.

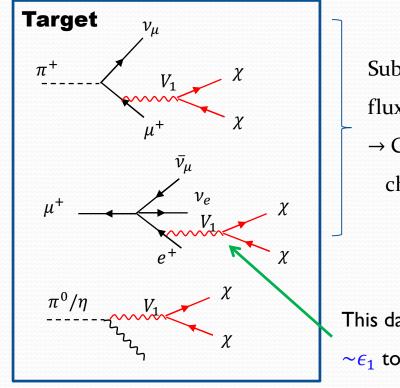

Detector

 $BR(V \rightarrow 2\chi):BR(V \rightarrow 2e) = 50\%: 50\%$ for illustration

□ Neutral meson contributions are small as they are **not focused** and their decays involve **no BR enhancement**.

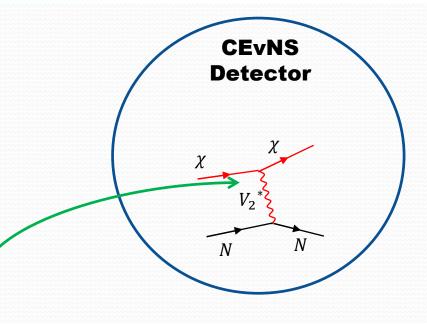
Collimated rings

Example Fit



 $m_{V_1} = 30$ MeV, $m_{V_2} = 200$ MeV, $m_{\chi} = 14$ MeV, $m_{\chi'} = 220$ MeV, $\epsilon_1 \epsilon_2 = (4 \times 10^{-4})^2$

- □ The best-fit parameters are consistent with various limits including limits for (in)visibly decaying dark photons, limits for the exotic decays of charged π^+/K^+ , and the MiniBooNE off-target mode (~30 times smaller POTs) measurement
- □ We have found equally good fits in the single-mediator scenario.


Doojin Kim, Texas A&M University

Predictions for CEvNS Experiments

Subdominant because the resulting χ
flux is not focused, but isotropic.
→ Conventional neutral meson
channels are important.

This dark-sector coupling is as small as $\sim \epsilon_1$ to have 50%:50% BRs.

This dark-sector coupling in the double-mediator scenario can be large enough for CEvNS experiments to observe MB signal events.

□ Moreover, more energetic beam based experiments, e.g., JSNS², can be sensitive to signals coming from the decay of kaons.

Conclusions

 The MiniBooNE excess can be explained by darksector scenarios, using three-body decays of charged mesons that are focused by the horn system.
 CEvNS experiments can test new physics scenarios of explaining the MiniBooNE excess.