KEEKE

Design of a 'bent linac' for carbon ion therapy

V. Bencini

A quick intro to hadron therapy

Hadron therapy exploits Bragg peak to precisely target tumor cells, sparing the surrounding healthy tissue

- Particularly beneficial when treating solid tumors in critical regions (liver, brain, spinal column)
- Carbon ion therapy specifically tailored to treat radioresistant tumors (narrower Bragg peak)

(a) X-ray beam

(b) Proton beam

Emory Proton Therapy Center, http://news.emory.edu/features/2018/11/proton-therapycenter/index.html, 2020

Why don't we use just hadron therapy?

A hadron therapy treatment costs at least 2 times a radiotherapy one.

How to address the problem

A hadron therapy treatment costs at least 2 times a radiotherapy one.

Hadron therapy accelerators must be designed aiming for high treatment quality and low cost.

Low cost				
•	Small footprint (reduce facility costs)			
•	Reduced cost components (highly modular, available on the market)			
•	Low operational costs (power, maintenance)			

What we do need

<u>A hadron therapy treatment costs at least 2 times a radiotherapy one.</u>

Hadron therapy accelerators must be designed aiming for high treatment quality and low cost.

Low cost

- Small footprint (reduce facility costs)
- Reduced cost components (highly modular, available on the market)
- Low operational costs (power, maintenance)

High beam quality

- Small spot size (small emittance, small divergence)
- Ideally monochromatic (small distal error)
- Short treatment time (fast energy modulation)

Linacs are very promising

<u>A hadron therapy treatment costs at least 2 times a radiotherapy one.</u>

Hadron therapy accelerators must be designed aiming for high treatment quality and low cost.

How linacs look like

The special feature of hadron therapy linacs

The special feature of hadron therapy linacs

The special feature of hadron therapy linacs

A few numbers

	Linac	Features	
Energy modulation	Active	Prevent activation issues	
Time for energy modulation	5 ms	Pulse to pulse	
Footprint	440 m ²	Small compared to synchrotrons	
Magnets	Permanent	Reduced power consumption	
Beam emittance RMS Norm.	$0.02 \ \pi \ mm \ mrad$	Extremely precise treatment	

Why would we bend a linac?

How the footprint is occupied is critical to fit the accelerator into a hospital facility

	Shape	Beam dynamics
Linear	×	\checkmark

The footprint problem

How the footprint is occupied is critical to fit the accelerator into a hospital facility

The footprint problem

How the footprint is occupied is critical to fit the accelerator into a hospital facility

The bent linac solution

Interlaced cavity-dipole scheme

15 m

Linac layout

Ε

15

The bent linac

TwinEBIS source

MEDeGUN commissioning

lon extraction

2020/2021 ion commissioning

- 1) Collector
- 2) Extractor
- 3) Adaptor
- 4) Rings
- 5) Gridded lens
- 6) Einzel lens
- 7) Switchyard
- 8) Deflector

Courtesy of H. Pahl

- 1) Collector
- 2) Extractor
- 3) Adaptor
- 4) Rings
- 5) Gridded lens
- 6) Einzel lens
- 7) Switchyard
- 8) Deflector

Main goals

- Simulate beam dynamics in the LEBT
- Beam matching to the RFQ
- Assess flexibility of the system

Where we are

• Beam matching purpose was to maximize transmission in RFQ acceptance

Einzel lens [kV]

- Beam matching purpose was to maximize transmission in RFQ acceptance
- Development of optimization routine to find the best operational settings

Where we are

- Beam matching purpose was to maximize transmission in RFQ acceptance
- Development of optimization routine to find the best operational settings
- LEBT has been assembled and is now under vacuum

- The LEBT is ready to be branched to TwinEBIS
- Measurements will be used to validate simulations

06/10/2021

750 MHz RFQ design

What is a RFQ?

RF resonating cavity hosting four vanes at alternating voltages

- transverse focusing (FODO-like)
- modulation on electrodes produces longitudinal electric field for acceleration
- accepts continuous input beam from particle source, structures it into bunches

750 MHz RFQ designed to be compact and operate at low power (reduce cost!)

Where we are

• Designed on purpose to have 50 % transmission

Courtesy of H. Pommerenke

750 MHz RFQ designed to be compact and operate at low power (reduce cost!)

- Designed on purpose to have 50 % transmission
- Shape the beam for injection into the 3 GHz bent linac

750 MHz RFQ designed to be compact and operate at low power (reduce cost!)

- Designed on purpose to have 50 % transmission
- Shape the beam for injection into the 3 GHz bent linac
- Trapezoidal vanes for higher efficiency

Courtesy of H. Pommerenke

750 MHz RFQ designed to be compact and operate at low power (reduce cost!)

Where we are

- Designed on purpose to have 50 % transmission
- Shape the beam for injection into the 3 GHz bent linac
- Trapezoidal vanes for higher efficiency

What's next?

- The RFQ design was the result of a great collaboration between Beam dynamics and RF people!
- RFQ is presently under construction in the framework of a collaboration with CIEMAT

Courtesy of H. Pommerenke

The bent linac design

Design of a 3 GHz linac for carbon ion therapy

Design of a 3 GHz linac for carbon ion therapy

- Layout and **beam dynamics design** of the full linac ٠
- Development of **Python** script for lattice design •

Design of a 3 GHz linac for carbon ion therapy

- Layout and **beam dynamics design** of the full linac
- Development of Python script for lattice design
- Concept and beam dynamics of **bent section** scheme

Design of a 3 GHz linac for carbon ion therapy

- Layout and **beam dynamics design** of the full linac
- Development of **Python** script for lattice design
- Concept and beam dynamics of **bent section** scheme
- End-to-end tracking for design validation

Design of a 3 GHz linac for carbon ion therapy

- Layout and **beam dynamics design** of the full linac
- Development of Python script for lattice design
- Concept and beam dynamics of **bent section** scheme
- End-to-end tracking for design validation

	Energy modulated	
	$100 \ MeV/u$	$430 \ {\rm MeV/u}$
$\varepsilon_{xx',RMS,norm.}(\pi \ mm \ mrad)$	0.0284	0.0279
$\varepsilon_{yy',RMS,norm.}(\pi \ mm \ mrad)$	0.0269	0.0268
$\varepsilon_{\varphi W,RMS,norm.}(\pi \ deg \ MeV)$	0.6220	0.6230

Design of a 3 GHz linac for carbon ion therapy

Where we are

- Layout and **beam dynamics design** of the full linac
- Development of **Python** script for lattice design
- Concept and beam dynamics of **bent section** scheme
- End-to-end tracking for design validation

What's next

- RF design of the accelerating cavities, error studies, beam instrumentation specs definition, etc..
- Adjust the design to measured beams

To conclude...

- The pre-injector, under construction by CIEMAT, will stand as a demonstrator of the feasibility of the low energy section of the machine
- The simulation and design work on the different components of the machine indicate the capability of the bent linac of providing a high-quality beam widely within treatment specifications.
- The bent section of the machine introduces a new approach to linac design and a new degree of flexibility in rearranging the shape of a linac to fit into a hospital facility.

Last but not least...

- My adventure working on the bent linac came to an end...
- It was a great experience to work on such a beautiful project and with so many incredible people!

Thanks to all the people from many groups (RF, KT, BE, EN...) who collaborated to this project:

F. Wenander, H. Pahl, J. Pitter, A. Pikin, G. Khutri, A. Lombardi, J.B. Lallement, H. Pommerenke, A. Grudiev, M. Cirilli, S. Matot, the TwinEBIS team and the Linac4 team!

Thank you!

The RFQ was proposed in 4 versions

The fixed energy section

The IH-structure option

In the framework of the collaboration with CIEMAT two alternative layouts have been proposed that consider an IH-structure at 750 MHz instead of the 3 GHz SCDTL.

Advantages

- Same frequency of the RFQ (easy injection)
- High efficiency (ZTT) in the considered energy range, thus lower power consumption

Drawbacks

• More difficult transverse matching (symmetric beam due to triplet focusing)

IH-structure design

Two options (1 and 2) with different voltage configurations (A and B) for a total of 4 configurations:

Option 1

- OPTION (1A): RFQ2 (up to 5 MeV/u) + IH-KONUS (constant voltage per gap 150 kV)
- OPTION (1B): RFQ2 (up to 5 MeV/u) + IH-KONUS (more conservative voltage per gap between 120-140 kV)

Option 2

- OPTION (2A): Only IH-KONUS cavities (constant voltage per gap 150 kV)
- OPTION (2B): Only IH-KONUS cavities (more conservative voltage per gap between 100-140 kV)

The IH design is based on KONUS dynamics configuration, which includes RF gaps and quadrupole magnets.

The IH-structure option

The IH-structure option

