Laser-based Particle/Astroparticle Physics Experiments at CERN
To probe the Low Energy Frontier...

OSQAR Status & Plans
P. Pugnat on the behalf of the OSQAR Collaboration (inputs from R. Ballou, M. Sulc & S. Kunc)

143rd Meeting of the SPSC (CERN), 12 October 2021
Outline

• Introduction

• OSQAR-CHASE (CHameleon Afterglow Search Experiment)
 - Experimental
 - Data analysis
 - Preliminary exclusion plots

• OSQAR-LSW (Light Shinning through Wall)
 - From past results to optimisation of data analysis & Future R&D plans towards JURA

• OSQAR-VMB (Vacuum Magnetic Birefringence)
 - Preparatory phase & Perspectives towards VMB@CERN

• Conclusion & Outlook
To measure for the 1st time the QED Vacuum Magnetic Birefringence (VMB) (Heisenberg & Euler, Weisskopf, 1936) i.e. the vacuum magnetic “anomaly” of the refraction index “n-1” ~ 10^{-22} in 9.5 T

“Exploring a new territory with a precision instrument is the key to discovery”, Prof. S.C.C. Ting

To explore the Physics at the Low Energy Frontier (sub-eV)
- Axion & Axion Like Particles i.e. solution to the strong CP problem (Weinberg, Wilczek, 1978) & Non-SUSY Dark Matter candidates (Abbott & Sikivie; Preskill, Wise & Wilczek, 1983)
- Paraphotons (Georgi, Glashow & Ginsparg, 1983), Milli-charged Fermions
- Chameleons (Khoury & Weltman, 2004) Dark Energy candidate
- The Unknown ... SERENDIPITY, “Why not an abundance of ultralight particles ?”

A complementary way of doing Particle Physics based on the Laser beam interaction with magnetic fields

Spin-offs in the domain of the metrology of electric & magnetic fields
- Spin-off : Start-up created in 2009 by Prof. L. Duvillaret
 https://www.kapteos.com/
Introduction to Chameleons

• Chameleon: Hypothetical scalar particle with a variable effective mass, which is an increasing function of the ambient energy density [J. Khoury and A. Weltman, Phys. Rev. D 69, 044026 (2004)].

• New kind of particle providing a phenomenological explanation of dark energy as a scalar field evolving in an effective potential, the minimum of which depends on the local matter density in such a way that the experimental constraints of 5th force and violation of equivalence principle are relaxed.

• Based on the coupling to photons, chameleons can manifest through an afterglow signal or a magneto-phosphorescence of the quantum vacuum, i.e. a remaining luminescence after the lighting is switched off.
Phase 1: Filling the “jar” with chameleons produced from the interaction of real photons with virtual ones (Primakoff effect)

\[P_{\gamma \to \phi} = \frac{4 \omega^2 g_{\gamma}^2 B^2}{m_{\phi}^2} \sin^2 \left(\frac{m_{\phi}^2 L}{4\omega} \right) \]

Phase 2: Emptying the “jar” and detection of “afterglow” regenerated photons (inverse Primakoff effect)

\[\dot{N}_{afterglow}(t) = \frac{\eta P_{esc} f_{vol} P_{\gamma \to \phi}^2 c}{\omega L_{total}} \left(1 - e^{-\Gamma dt} \right) e^{-\Gamma t} \]

Successful Experimental Run in 2017

- Typical durations of phases 1&2: ¼ - 11 h
- Measured switching time between phases 1&2: 6-20 s

For Low Energy Laser-based Particle/Astroparticle Physics
Definition of the ROI with a diffuse light source (CCD sensitive area of $13 \times 13 \text{ mm}^2$) used for data reduction (Detection efficiency & noise characterisation)

- Afterglow signal observed but non-magnetic as it dissapear after background substraction recorded with exactly the same configuration and protocole without magnetic field
- Negative results also obtained for pseudo-scalar search
- The quantitative analysis to define exclusion plots is not straightforward and more complex than anticipated with several Chameleon potentiels to consider

https://doi.org/10.1016/j.nima.2018.11.065
https://hal.ird.fr/INPG/hal-01991788
Phase 2, *i.e.* Afterglow photon emission, in the 2-point path approximation, *i.e.* 3D axisymmetry path

The flux of afterglow photons as a function of time can be modeled as:

\[S_{AFT} (t) = \eta \frac{F_\gamma P_{\phi \leftrightarrow \gamma} \Gamma_{AFT}}{\Gamma_{DEC}} (1 - e^{-\Gamma_{DEC} \tau_{Prod}}) e^{-\Gamma_{DEC} t} \]

\(\eta = 0.65 \) is the overall detection efficiency

\[\Gamma_{DEC} = \frac{1}{4\pi} \int \int d\Sigma \int d\Omega P_{DEC} \frac{\cos \theta}{L_T} \]

with

\[P_{DEC} = P_{ABS}^{AFT} + |\tilde{\psi}_{\gamma}^{Bexit}|^2 \]

and

\[P_{AFT} = \left(|(\tilde{\psi}_{\gamma}^{Bexit} \cdot \hat{S}) A_{S}^{N-N} |^2 + |(\tilde{\psi}_{\gamma}^{Bexit} \cdot \hat{P}) A_{P}^{N-N} |^2 \right) P_{DET} \]

Exclusion limits in the parameter space (chameleon mass m_ϕ, chameleon-photon coupling β_γ), deduced from no signal observation and detector noise in the OSQAR-CHASE data collected in summer 2017 with the experimental setup using two focusing optical lenses, for different chameleon phase shifts ξ_ϕ at each bouncing on the walls.

These shifts depend on the chameleon potential, more precisely $\xi_\phi = n\pi/(n-2)$ for $V = g \phi^n$, $\xi_\phi = n\pi/(n+2)$ for $V = g \phi^n$ and $\xi_\phi = \pi$ for $V = M_\Lambda^4[1 + e^{-\kappa \phi/M_\Lambda}]$.

\[\xi_\phi = \frac{\pi}{n-2} \] for $V = g \phi^n$, $\xi_\phi = \frac{\pi}{n+2}$ for $V = g \phi^n$, $\xi_\phi = \pi$ for $V = M_\Lambda^4[1 + e^{-\kappa \phi/M_\Lambda}]$.

The OSQAR Experiments @ CERN For Low Energy Laser-based Particle/Astroparticle Physics
Focus on chameleon – photon vs. chameleon – matter coupling for the inverse power law chameleon dynamic potential

\[V(\phi) = M_\Lambda^4 \left(1 + \kappa M_\Lambda^2 / \phi^n\right) \]
\[(\kappa = 1, n = 1) \]
\[M_\Lambda = \rho^{1/4}_{DE} = 2.41 \times 10^{-3} \text{ eV} \]
What was not taken into account in the present analysis?

- Complex propagation not inscribed in a plane \(i.e. \) full 3D in general --> Beyond the 3D axisymmetry geometry
 - Assessment required especially for large \(\beta_m \)
- Non-specular reflection of photons, \(i.e. \) the diffuse one not considered
- Spatial distribution of the signal on the CCD detector to get more accurate exclusion limits through matched filtering of the data.

- Chameleon fragmentation the possibility of which is expected for chameleon potentials with high exponents (\(n = -3, -4, \ldots \) or 3, 4, \ldots)

All this can be achieved through Monte-Carlo simulations of the afterglow signal.
Light Shining through a Wall experiment (LSW)

Present state-of-the-art for LSW Experiments

\[
\frac{dN}{dt} = \frac{P}{\eta} \left(P_{\text{ALP}} \right)^2
\]

\[P_{\text{ALP}} = \frac{1}{4} \left(g_{\gamma \gamma} BL \right)^2 \left(\frac{2}{qL} \sin \frac{qL}{2} \right)^2 \frac{\omega}{\sqrt{\omega^2 - m_A^2}}\]

with \(q = |k_y - k_A| \), \(k_y = \omega \) and \(k_A = \sqrt{\omega^2 - m_A^2} \)

\(\omega \) : photon energy - \(m_A \) : ALP mass
in units of LH system \((h = c = \mu_0 = \varepsilon_0 = 1)\)

K. van Biber et al., PRL 59 (1987) 759

@ 95% Confidence Limit deduced from model independent Bayesian analysis,
ALPs-diphoton coupling < 3.2 \cdot 10^{-8} \text{ GeV}^{-1} (for m_A < 0.2 \text{ meV})
• Ongoing ALPs-II at DESY (12 + 12 straightened 5 T Hera dipoles with ambitious optical scheme)

~ 2 x 120 m

• Longer term future for LSW experiments with JURA (Joint Undertaken Research for Axion/ALPs), possibly with say 15 + 15 spare 9 T LHC dipoles (~ 2 x 225 m) with the same or alternative optical scheme (?)

→ At present, JURA = OSQAR + ALPs + (UF?)...

→ Ambitious proposal, R&D needs to start NOW...

• Low divergent structured beam (patent: WO2019211391 (A1), EP3564734 (A1))

• Optimisation of data analysis with matched filter (similar to Ligo & Virgo)
 - At present OSQAR-LSW sensitivity can be improved by x 3, further progress possible?

• Alternative optical scheme under consideration
 - Interferrometry approach, cf. https://cds.cern.ch/record/2641609
 - Amplification by resonant atomic transition (cf. arXiv:1803.09388v2)
The birth of a meta-collaboration, Remaining on a Human scale

Letter of Intent to measure Vacuum Magnetic Birefringence: the VMB@CERN experiment

R. Ballou1, F. Della Valle2, A. Ejlli3, U. Gastaldi4, H. Grote5, Š. Kune5, K. Meissner6, E. Milotti7, W.-T. Ni8, S.-S. Pan9, R. Pengo10, P. Pugnat11, G. Ruoso10, A. Siemko12, M. Šulc5 and G. Zavattini13∗

1Institut Néel, CNRS and Université Grenoble Alpes, Grenoble, France
2INFN, Sez. di Pisa, and Dip. di Scienze Fisiche, della Terra e dell’Ambiente, Università di Siena, Siena (SI), Italy
3School of Physics and Astronomy, Cardiff University, Cardiff, UK
4INFN, Sez. di Ferrara, Ferrara (FE), Italy
5Technical University of Liberec, Czech Republic
6Institute of Theoretical Physics, University of Warsaw, Poland
7Dip. di Fisica, Università di Trieste and INFN, Sez. di Trieste, Trieste (TS), Italy
8Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, ROC
9Center of Measurement Standards, Industrial Technological Research Institute, Hsinchu, Taiwan, ROC
10INFN, Lab. Naz. di Legnaro, Legnaro (PD), Italy
11LNCMI, EMFL, CNRS and Université Grenoble Alpes, Grenoble, France
12CERN, Genève, Switzerland
13Dip. di Fisica e Scienze della Terra, Università di Ferrara and INFN, Sez. di Ferrara, Ferrara (FE), Italy

Discuss for the 1st time within PBC in May 2017 (slide 17)
& also presented to the SPSC-127

Proposed modulation scheme of VMB@CERN (SPSC-I-249)

L1,2 : rotating half-wave-plates
PDE : Extinction Photodiode
PDT : Transmission Photodiode.

With a single LHC dipole at 9.5 T, VMB should be detected with SNR = 1 in less than 1 day of integration.

Improvements of the OSQAR initial proposal SPSC-P-331, see also P. Pugnat, L. Duvillaret et al., Czech. J. Phys. 55 (2005) A389

See also G. Zavattini et al. https://arxiv.org/abs/2110.03943

TU Liberec, Czech Republic
Conclusion & Outlook

- OSQAR-CHASE
 - Détailed data analysis of the 2017 run for scalar and pseudoscalar Chameleon search is more complex and demanding than anticipated.
 - New exclusion limits is being rigously defined from no magnetic afterglow signal observed; they are significantly better than those anticipated in the OSQAR-CHASE proposal.
 - Robusness of the analysis (beyond 3D axisymmetry, diffuse reflection) as well complementary search (chameleon fragmentation) still need to be performed.

- OSQAR-LSW
 - JURA will be the next postALPS-II LSW experiment requiring preparatory activities, which are starting within OSQAR collaboration, including:
 - Control of the laser beam divergence on long lengths (patent on structured beam);
 - Optimisation of the data analysis with matched filter;
 - Investigation of new type of experiments linked to other scientific fields such as atomic physics.

- OSQAR-VMB
 - Activities are pursued within the scope of the VMB@CERN future proposal in preparation.
 - Synergy between VMB@CERN and BabyJURA is looked at to minimise requirements asked to CERN, specially regarding the future need of LHC dipoles in the SM18 hall.