scikinC – A tool for deploying machine learning as binaries

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

scikinC

a tool for deploying machine learning as binaries

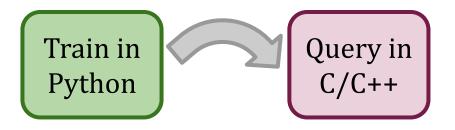
Lucio Anderlini¹, Matteo Barbetti^{1,2}

¹ Istituto Nazionale di Fisica Nucleare – Sezione di Firenze
 ² Università degli Studi di Firenze – Dipartimento di Ingegneria dell'Informazione

Computational Tools for High Energy Physics and Cosmology 2021-11-26

Motivation

Wider and wider usage of machine learning algorithms in HEP C++ applications.



Several options for deployment exist, but come with some practical limitation. For example,

- > Require **external dependencies** sometimes difficult to integrate in the build system of large HEP applications
- > Expect vectorized inputs introducing **overhead for branched flows**, as for example Geant4-based simulations
- > Introduce limits in the interplay between the **preprocessing** and **algorithmic** steps
- Solution Often require **compiling with the framework** large part of the algorithm.

The crib of scikinC: *the parametric simulation of LHCb*

Speeding up the simulation of the collision events at the LHC is a clear priority: *the current model is unsustainable for future Runs of the LHC.*

Among the options under investigation, *ultra-fast simulation* aims at *replacing detector simulation and the subsequent reconstruction with machine learning algorithms* or simpler parametrizations for the higher level quantities used in physics analysis.

Sim applications are **long pipelines of tens of ML algorithms**, each simulating response and reconstruction of a part of the detector.

Goal: switch from BDT model for the efficiency to a NN without touching the framework.

The idea: *dynamically link to compiled models*

The input and the expected output for **each model is defined within the framework**, but then the ML model can be defined as a plug-in and dynamically linked to the main application as a shared object.

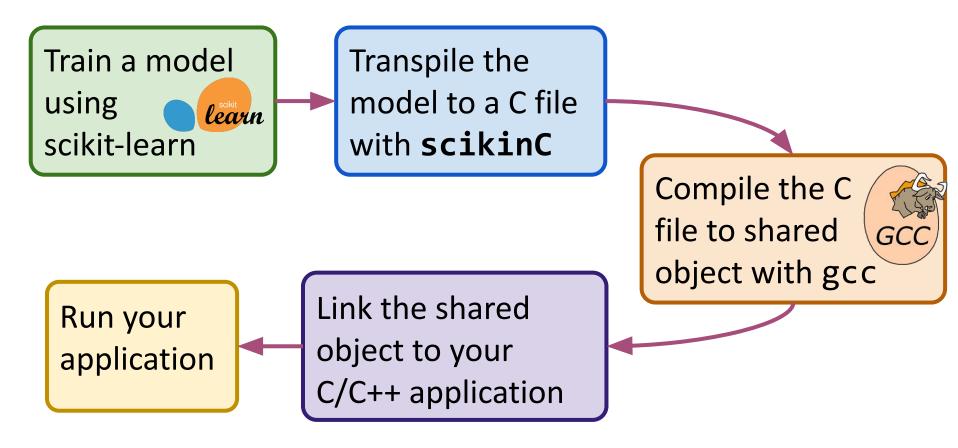
Models can be developed and released independently of the framework application as long as retaining the same list of input and output features.

 \rightarrow development cycle of ML algorithms is much faster than for framework applications

Preprocessing steps must also be included in the shared object as part of the main algorithm (*e.g.* BDTs and NNs have different requirements in terms of preprocessing).

Need a tool to transparently compile into *shared objects* ML algorithms trained in Python.

scikinC: *a transpiler of ML models from Python to C*



1. Train a model with scikit-learn

```
import numpy as np
import pickle
```

```
from sklearn.preprocessing import MinMaxScaler
```

```
minmax = MinMaxScaler()
minmax.fit ( np.random.normal(0,5, (2,1000) )
```

```
with open("example_scaler.pkl", 'wb') as f:
    pickle.dump (minmax, f)
```

Models supported by scikinC include several preprocessing steps, BDTs and some keras Deep Neural Networks.

Training happens as usual, independently of scikinC.

2. Transpile the model to a C file with scikinC

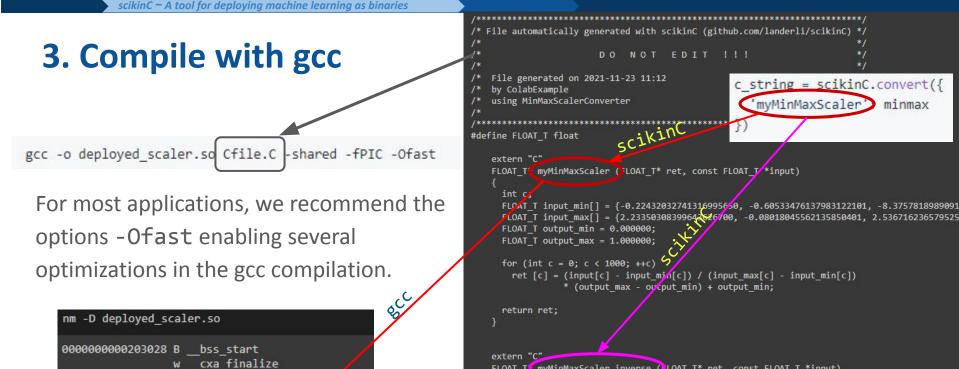
Trained models can be transpiled directly in Python,

or stored with pickle and converted with scikinC CLI.

```
import scikinC
```

```
c_string = scikinC.convert({
    'myMinMaxScaler': minmax
})
```

scikinC example_scaler.pkl > Cfile.C



BCC

FLOAT T myMinMaxScaler inverse ()LOAT T* ret, const FLOAT T *input)

int c FLOAT T input min = 0.000000; FLOAT T input max = 1.000000; FLOAT_T output min[] = {-0.22432032741316995650, -0.60533476137983122101, -8.375781898909 FLOAT T output max[] = {2.23350308399643626700, -0.08018045562135850401, 2.53671623657952 for (int c = 0; c < 1000; ++c) ret [c] = (input[c] - input min) / (input max - input min) * (output max[c] - output min[c]) + output min[c];

```
return ret;
```

00000000000007b0 cmyMinMaxScaler inverse

0000000000006b0 C myMinMaxScaler

w gmon start

U stack chk fail

w ITM deregisterTMCloneTable

w ITM registerTMCloneTable

0000000000203028 D edata

0000000000203030 B end

0000000000000894 T fini

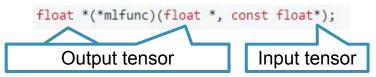
0000000000000560 T init

c string = scikinC.convert({

'myMinMaxScaler' minmax

4. Link the shared object to your C/C++ application

All models converted by scikinC share the prototype:



Load the file **by path**, and link to the function **by name**.

Allocate some memory for your input and output tensors, and evaluate the model calling a function.

Finally, release the library.

// C Library for dynamic linking
#include <dlfcn.h>

// Define the type for generic machine learning functions
typedef float *(*mlfunc)(float *, const float*);

```
void somewhere_in_your_code (void)
{
   // Open the shared object library
   void *handle = dlopen ("./deployed_scaler.so", RTLD_LAZY );
   if (!handle)
     exit(1);
```

// Load the scaler by name (as from Python dictionary key)
mlfunc minmax = mlfunc(dlsym (handle, "myMinMaxScaler"));

```
// Prepares the input and output buffer and evaluate the function
float *inp [] = { /* your input goes here */ };
float *out [ /*output n_features goes here*/ ];
minmax ( out, inp );
```

```
// Optionally, closes the linked library file
dlclose(handle);
```

4. Link the shared object to your C/C++ application

// C Library for dynamic linking

#include <dlfcn.h>

The path of the shared object and the name of the symbol are strings and can be defined at runtime, without recompiling anything. // Define the type for generic machine learning functions typedef float *(*mlfunc)(float *, const float*); void somewhere in your code (const char libpath, const char* funcname) // Open the shared object library void *handle = dlopen (libpath, RTLD LAZY); if (!handle) exit(1); // Load the scaler by name (as from Python dictionary key) mlfunc minmax = mlfunc(dlsym (handle, funcname)); // Prepares the input and output buffer and evaluate the function float *inp [] = { /* your input goes here */ }; float *out [/*output n features goes here*/]; minmax (out, inp); // Optionally, closes the linked library file dlclose(handle);

Implemented algorithms (scikit-learn)

Scikit-Learn preprocessing

Model	Implementation	Test	Notes
MinMaxScaler	Available	Available	
StandardScaler	Available	Available	
QuantileTransformer	Available	Available	
Pipeline	Available	Partial	Pipelines of pipelines break

Scikit-Learn models

Model	Implementation	Test	Notes
GradientBoostingClassifier	Available	Available	

A few other preprocessing steps in the pipeline...

Implemented algorithms (keras)

Keras Models

Model	Implementation	Test	Notes
Sequential	Available	Available	

Keras Layers

Model	Implementation	Test	Notes
Dense	Available	Available	
PReLU	Available	Available	
LeakyReLU	Available	Available	

Keras Activation functions

Model	Implementation	Test	Notes
tanh	Available	Available	
sigmoid	Available	Available	
relu	Available	Available	

<u>tvm</u> is a very promising (and ambitious) project aiming at compiling deep models through LLVM. We are evaluating offloading to tvm models not natively-supported by scikinC.

Known general issues

- Programming in C is fun, everything is simple and lean. At least until you get a Segmentation Fault.
- Distribution of binaries may hinder computer security and limit portability of the applications.
- Compilation of very large models may require several hours (especially for BDTs).

Conclusion

scikinC is a small stand-alone tool to convert Python-trained ML algorithms in C functions.

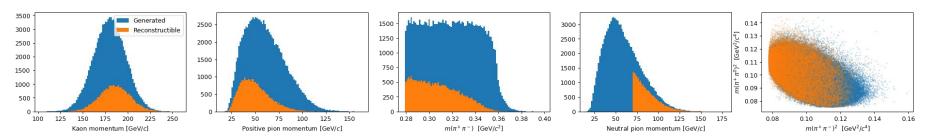
C functions can then be easily compiled into shared objects and dynamically linked to other applications.

While not yet a mature package, **scikinC** is rather modular and not difficult to extend. The few models it currently includes are sufficient to cover a large variety of applications, including several parametrizations for the ultra-fast simulation of the LHCb experiment.

If applying scikinC to your own tool sounds interesting, don't hesitate to get in touch!

In the tutorial

https://colab.research.google.com/drive/1E0jWf57aQ]qvdArDYibwWe3QAov_qqDj?usp=sharing



- Mock your own detector simulation
- Model the experimental efficiency with a Gradient Boosting Decision Tree
- Model the resolution with a Neural Network in keras
- Deploy everything with scikinC into a binary shared object
- Compile, link and validate the deployed model in Python and C applications.

