
Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

scikinC
a tool for deploying machine learning as binaries

Lucio Anderlini 1, Matteo Barbetti 1,2

1 Istituto Nazionale di Fisica Nucleare − Sezione di Firenze
2 Università degli Studi di Firenze − Dipartimento di Ingegneria dell’Informazione

Computational Tools for High Energy Physics and Cosmology 2021-11-26

landerlini/scikinC

1

https://indico.cern.ch/event/1076291/
https://github.com/landerlini/scikinC

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

Motivation

Wider and wider usage of machine learning algorithms in HEP C++ applications.

Train in
Python

Query in
C/C++

Several options for deployment exist, but come with some practical limitation.

For example,

➢ Require external dependencies sometimes difficult to integrate in the build system of large HEP applications

➢ Expect vectorized inputs introducing overhead for branched flows, as for example Geant4-based simulations

➢ Introduce limits in the interplay between the preprocessing and algorithmic steps

➢ Often require compiling with the framework large part of the algorithm.

2

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

The crib of scikinC: the parametric simulation of LHCb

Speeding up the simulation of the collision events at the LHC is a clear priority:

the current model is unsustainable for future Runs of the LHC.

Among the options under investigation, ultra-fast simulation aims at replacing detector

simulation and the subsequent reconstruction with machine learning algorithms or

simpler parametrizations for the higher level quantities used in physics analysis.

Sim applications are long pipelines of tens of ML algorithms, each simulating response

and reconstruction of a part of the detector.

Generator
Geometrical
Acceptance

Reconstruction
Efficiency

Tracking
Efficiency

Charged Particle
Identification

Calorimeters
Simulation

...

Goal: switch from BDT model for the efficiency to a NN without touching the framework.

3

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

The idea: dynamically link to compiled models

The input and the expected output for each model is defined within the framework,

but then the ML model can be defined as a plug-in and dynamically linked to the main

application as a shared object.

Models can be developed and released independently of the framework application as

long as retaining the same list of input and output features.

 → development cycle of ML algorithms is much faster than for framework applications

Preprocessing steps must also be included in the shared object as part of the main

algorithm (e.g. BDTs and NNs have different requirements in terms of preprocessing).

4

Need a tool to transparently compile into shared objects ML algorithms trained in Python.

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

scikinC: a transpiler of ML models from Python to C

5

Train a model
using
scikit-learn

Transpile the
model to a C file
with scikinC

Compile the C
file to shared
object with gcc

Link the shared
object to your
C/C++ application

Run your
application

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

1. Train a model with scikit-learn
Models supported by scikinC include several

preprocessing steps, BDTs and some keras Deep

Neural Networks.

Training happens as usual, independently of

scikinC.

6

Trained models can be transpiled directly

in Python,

or stored with pickle and converted with

scikinC CLI.

2. Transpile the model to a C file with scikinC

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

3. Compile with gcc

For most applications, we recommend the

options -Ofast enabling several

optimizations in the gcc compilation.

7

scik
inC

sc
ik
in
C

gc
c

gc
c

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

4. Link the shared object to your C/C++ application

All models converted by scikinC

share the prototype:

8

OutputOutput tensor Input tensor

Load the file by path, and link to

the function by name.

Allocate some memory for your

input and output tensors, and

evaluate the model calling a function.

Finally, release the library.

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

4. Link the shared object to your C/C++ application

The path of the shared object and

the name of the symbol are strings

and can be defined at runtime,

without recompiling anything.

9

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

Implemented algorithms (scikit-learn)

10

A few other preprocessing steps in the pipeline…

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

Implemented algorithms (keras)

11

tvm is a very promising (and ambitious) project aiming at compiling deep models through LLVM.
We are evaluating offloading to tvm models not natively-supported by scikinC.

https://arxiv.org/abs/1802.04799

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

Known general issues

● Programming in C is fun, everything is simple and lean. At least until you get a

Segmentation Fault.

● Distribution of binaries may hinder computer security and limit portability of the

applications.

● Compilation of very large models may require several hours (especially for BDTs).

12

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

Conclusion

scikinC is a small stand-alone tool to convert Python-trained ML algorithms in C

functions.

C functions can then be easily compiled into shared objects and dynamically linked to

other applications.

While not yet a mature package, scikinC is rather modular and not difficult to extend.

The few models it currently includes are sufficient to cover a large variety of applications,

including several parametrizations for the ultra-fast simulation of the LHCb experiment.

If applying scikinC to your own tool sounds interesting, don’t hesitate to get in touch!

13

Nov. 2021 Computational Tools in HEP and Cosmology − 2021

scikinC − A tool for deploying machine learning as binaries

Lucio Anderlini Istituto Nazionale di Fisica Nucleare − Sezione di Firenze

In the tutorial

● Mock your own detector simulation

● Model the experimental efficiency with a Gradient

Boosting Decision Tree

● Model the resolution with a Neural Network in keras

● Deploy everything with scikinC into a binary shared object

● Compile, link and validate the deployed model in Python

and C applications.

14

https://colab.research.google.com/drive/1E0jWf57aQJqvdArDYibwWe3QAov_qgDj?usp=sharing

https://colab.research.google.com/drive/1E0jWf57aQJqvdArDYibwWe3QAov_qgDj?usp=sharing

