I scikinC — A tool for deploying machine learning as binaries

I N F N Istituto Nazionale di Fisica Nucleare
SEZIONE DI FIRENZE

landerlini/scikin

-

scikinC
a tool for deploying machine learning as binaries

Lucio Anderlini ', Matteo Barbetti '+

! Istituto Nazionale di Fisica Nucleare — Sezione di Firenze
2 Universita degli Studi di Firenze — Dipartimento di Ingegneria dell'Informazione

Computational Tools for High Energy Physics and Cosmology 2021-11-26

Lucio Anderlini Nov. 2021 Computational Tools in HEP and Cosmology — 2021

https://indico.cern.ch/event/1076291/
https://github.com/landerlini/scikinC

I scikinC — A tool for deploying machine learning as binaries

Motivation

Wider and wider usage of machine learning algorithms in HEP C++ applications.

Train in Q Query in

Python C/C++

Several options for deployment exist, but come with some practical limitation.
For example,

Require external dependencies sometimes difficult to integrate in the build system of large HEP applications
Expect vectorized inputs introducing overhead for branched flows, as for example Geant4-based simulations
Introduce limits in the interplay between the preprocessing and algorithmic steps

Often require compiling with the framework large part of the algorithm.

VYVYY

Lucio Anderlini Nov. 2021 Computational Tools in HEP and Cosmology — 2021 > 2

I scikinC = A tool for deploying machine learning as binaries R

The crib of scikinC: the parametric simulation of LHCb

Speeding up the simulation of the collision events at the LHC is a clear priority:
the current model is unsustainable for future Runs of the LHC.

Among the options under investigation, ultra-fast simulation aims at replacing detector
simulation and the subsequent reconstruction with machine learning algorithms or
simpler parametrizations for the higher level quantities used in physics analysis.

Sim applications are long pipelines of tens of ML algorithms, each simulating response
and reconstruction of a part of the detector.

Geometrical Reconstruction Tracking Charged Particle Calorimeters
Generator — — | - L ..

Acceptance Efficiency Efficiency Identification Simulation

Goal: switch from BDT model for the efficiency to a NN without touching the framework.

Lucio Anderlini Nov. 2021 Computational Tools in HEP and Cosmology — 2021 Y

I scikinC = A tool for deploying machine learning as binaries R

The idea: dynamically link to compiled models

The input and the expected output for each model is defined within the framework,
but then the ML model can be defined as a plug-in and dynamically linked to the main
application as a shared object.

Models can be developed and released independently of the framework application as
long as retaining the same list of input and output features.
— development cycle of ML algorithms is much faster than for framework applications

Preprocessing steps must also be included in the shared object as part of the main
algorithm (e.g. BDTs and NNs have different requirements in terms of preprocessing).

Need a tool to transparently compile into shared objects ML algorithms trained in Python.

Lucio Anderlini Nov. 2021 Computational Tools in HEP and Cosmology — 2021 > 4

I scikinC — A tool for deploying machine learning as binaries

scikinC: a transpiler of ML models from Python to C

4) 4)

Train a model Transpile the
using Q@ (teat- —»| model to a C file
scikit-learn with scikinC) \
Compile the C
file to shared

§ . . \ | object with gcc
Run your Link the shared <_:/

!) | C/C++ application

y

y

Lucio Anderlini Istituto Nazionale di Fisica Nucleare — Sezione di Firenze Nov. 2021 Computational Tools in HEP and Cosmology — 2021 > 5

I scikinC = A tool for deploying machine learning as binaries R

1. Train a model with scikit-learn

import numpy as np Models supported by scikinC include several
import pickle .
preprocessing steps, BDTs and some keras Deep

from sklearn.preprocessing import MinMaxScaler Neural Networks

minmax = MinMaxScaler()

minmax.fit (np.random.normal(®e,5, (2,1608)) Training happens as usual, independenﬂy Of
with open("example scaler.pkl”, 'wb') as f: scikinC.

pickle.dump (minmax, f)

2. Transpile the model to a C file with scikinC

Trained models can be transpiled directly HApOEL scTine

. c_string = scikinC.convert({
In Python; ‘myMinMaxScaler': minmax
1)

or stored with pickle and converted with
scikinC CLI scikinC example_scaler.pkl > Cfile.C

Lucio Anderlini Nov. 2021 Computational Tools in HEP and Cosmology — 2021 > 6

scikinC = A tool for deploying machine learning as binaries
/**!*#****#********Mi****’k***W)Iuk*!**i**#!*#X**l****wii**i*****l**ti**i***!**/
/* File automatically generated with scikinC (github.com/landerli/scikinC) */
/*

3. Compile with gcc : s wor enrr 1

/* File generated on 2021-11-23 11:12

/* by ColabExample

/* using MinMaxScalerConverter

/*
/*.‘F***x)ﬁ*x**l**i***k‘(***‘f**“#*l*!*»****'*i***i*"*

#define FLOAT_T float) :)_“
sci¥

gcc -o deployed scaler.so -shared -fPIC -Ofast extern “c5
FLOAT_T' - myMinMaxScaler ("LOAT_T* ret, const FLOAT_J/ *input)

{

int c;

FLCAT_T input_min[] = {-©.22432032741316995650, -0.60533476137983122101, -8.3757818989091
FLOAT_T input_max[] = {2.233583083996. 6700, -0.08018045562135850401, 2.536716236579525
FLOAT_T output_min = ©.000000; K

options -Ofast enabling several FLOATT autput_nax - 1.000006; L
C

For most applications, we recommend the

for (int ¢ = ©; ¢ < 1000; ++C) 67
ret [c] = (input[c] - input_mifi[c]) / (input_max[c] - input_min[c])
* (output_max - oytCput min) + output_min;

optimizations in the gcc compilation.

return ret;
nm -D deployed scaler.so

e

0000000000203028 B _ bss_start

extern "C"

o ———Cxa——fi’1a]“ize FLOAT_T%_myMinMaxScaler_inverse (FLOAT_T* ret, const FLOAT_T *input)
0000000000203028 D _edata {
0000000000203630 B _end int <3

el FLOAT_T input_min = ©.000000;
6000000000000894 T _fini FLOAT_T input_max = 1.000000;

w _ gmon_start FLOAT_T output_min[] = {-0.22432032741316995650, -0.60533476137983122101, -8.375781898909
0000000000000560 T _init FLOAT T output max[] = {2.23350308399643626700, -0.08018045562135850401, 2.53671623657952

w _ITM deregisterTMCloneTable Fo (it 5 i y

- . or (int ¢ = 9; ¢ 3 HC

o —ITf'} reg.sterTMCloneTable ret [c] = (input[c] - input_min) / (input_max - input_min)
00000000000006b0 « myMinMaxScaler * (output_max[c] - output_min[c]) + output_min[c];
00000000000007b0 «_myMinMaxScaler inverse

U _ stack chk_fail it

J

Nov. 2021 Computational Tools in HEP and Cosmology — 2021 7

return ret;

Lucio Anderlini

I scikinC = A tool for deploying machine learning as binaries R

4. Link the shared object to your C/C++ application

C Library for dynamic linking
#include <dlfcn.h>
A” mOdels Converted by SCikinC // Define the type for generic machine learning functions

=

typedef float *(* mlfunc)(float *, const float*);

share the prototype:

float *(*mlfunc)(float *, const float*); void somewhere_in_your_code (void)
/\ /\ l\ { // Open the shared object library
OUtpUt tensor InpUt tensor void *handle = dlopen ([".;"deployed_scaler.so",] RTLD_LAZY);
if (!handle)
. . exit(1);
Load the file by path, and link to
'/ Load the scaler by name (as from Python dictionary key)

the function by name.

mlfunc minmax = mlfunc(dlsym (handle ['myMinMaxScaler }),

// Prepares the irpuc and output buffer and evaluate the function
Allocate some memory for your float 10D [= [/% your Input goss here +/ 1
. float *out [/*output n_features goes here*/];
input and output tensors, and o
evaluate the model calling a function. OOt onaT v eloses Tre TiHeed Tirartiie
dlclose(handle),

Finally, release the library. }
Computational Tools in HEP and Cosmology 2021 BRI

I scikinC = A tool for deploying machine learning as binaries R

4. Link the shared object to yo C/C++ appllcatlon

C rary for dynamic linking

,T or

\
#includ gircn.n>

Define the type for generic machine learning functions

typedef float *(*mlfunc)(float *, const float*);

. void somewhere_in_your_code (const char const char*
The path of the shared object and {

the name of the symbol are strings void *handle = dlopen (Libpath) RTLD_LAZY)
. . if (!handle)
and can be defined at runtime, Sietays

funcnamg

Open the shared object libpafy

without recompiling anything.

+}

/ Load the scaler by name (as from Python dict

mlfunc minmax = mlfunc(dlsym (handle,

/ Prepares the input and output buffer and evaluate the function
float *inp [] = { /* your input
float *out [/*output n_features goes here*/];
minmax (out, inp);

/ Optionally, closes the linked library file

dlclose(handle),
}

Lucio Anderlini Nov. 2021 Computational Tools in HEP and Cosmology — 2021 > 9

I scikinC — A tool for deploying machine learning as binaries

Implemented algorithms (scikit-learn)

Scikit-Learn preprocessing

Model Implementation Test
MinMaxScaler Available Available
StandardScaler Available Available
QuantileTransformer Available Available
Pipeline Available Partial

Scikit-Learn models

Model Implementation

GradientBoostingClassifier Available

Lucio Anderlini Nov. 2021

Notes

Pipelines of pipelines break

Test

Notes

Available

A few other preprocessing steps in the pipeline...

Computational Tools in HEP and Cosmology — 2021

I scikinC = A tool for deploying machine learning as binaries R

Implemented algorithms (keras)

Keras Models

Model Implementation Test Notes s s :
Keras Activation functions
Sequential Available Available
Model Implementation Test Notes
Keras Layers tanh Available Available
Model Implementation Test Notes sigmoid Available Available
Dense Available Available relu Available Available
PRelLU Available Available
LeakyRelLU Available Available

tvm is a very promising (and ambitious) project aiming at compiling deep models through LLVM.
We are evaluating offloading to tvm models not natively-supported by scikinC.

Lucio Anderlini Nov. 2021 Computational Tools in HEP and Cosmology — 2021

https://arxiv.org/abs/1802.04799

I scikinC — A tool for deploying machine learning as binaries

Known general issues

® Programming in Cis fun, everything is simple and lean. At least until you get a
Segmentation Fault.

e Distribution of binaries may hinder computer security and limit portability of the
applications.

e Compilation of very large models may require several hours (especially for BDTs).

Lucio Anderlini Nov. 2021 Computational Tools in HEP and Cosmology — 2021

I scikinC — A tool for deploying machine learning as binaries

Conclusion

scikinC is a small stand-alone tool to convert Python-trained ML algorithms in C
functions.

C functions can then be easily compiled into shared objects and dynamically linked to
other applications.

While not yet a mature package, scikinC is rather modular and not difficult to extend.
The few models it currently includes are sufficient to cover a large variety of applications,
including several parametrizations for the ultra-fast simulation of the LHCb experiment.

If applying scikinC to your own tool sounds interesting, don’t hesitate to get in touch!

Computational Tools in HEP and Cosmology — 2021

I scikinC — A tool for deploying machine learning as binaries

In the tutorial

https://colab.research.qoogle.com/drive/T1EOIWES 2aQ)avdArD Yibw e 3QAov_ a4D)j 2ucp=charing

3500 1 BN Generated

W= Reconstructible

2500
3000 -

1250

2500 2000

2000 - 1500

1500 4
1000
1000 1
500

500

o0
100 125 150 175 200 225 250
Kaon momentum [GeV/c]

25

50 75 100 125 150
Positive pion momentum [GeV/c]

1500 -

1000 -
750 4
500

250 A

04
028 030 032 034 036 038 040

m(n*n-) [Gev/c?]

0.08 0.10 012 014

m(n*n-)? [Gev?/c']

25 50 75 100 125 150 175 0.16

Neutral pion momentum [GeV/c]

e Mock your own detector simulation . Lo b b

e Model the experimental efficiency with a Gradient c sl
Boosting Decision Tree i Zz I

e Model the resolution with a Neural Network in keras £ o

e Deploy everything with scikinC into a binary shared objec oo

e Compile, link and validate the deployed model in Python o oo oi1 oiz ;o.‘ia 0% ol
and C applications. e

Computational Tools in HEP and Cosmology — 2021

https://colab.research.google.com/drive/1E0jWf57aQJqvdArDYibwWe3QAov_qgDj?usp=sharing

