
MiMeS: Misalignment Mechanism Solver

Dimitrios Karamitros

Manchester U.

24/11/2021
Computational Tools for High Energy Physics and Cosmology

Institut de Physique des 2 Infinis Lyon, France

Detailed documentation: arXiv:2110.12253
Github: github.com/dkaramit/MiMeS

HEPForge: mimes.hepforge.org

Supported by the Lancaster–Manchester–Sheffield Consortium for Fundamental Physics, under STFC research grant ST/T001038/1.

https://arxiv.org/abs/2110.12253
https://github.com/dkaramit/MiMeS
https://mimes.hepforge.org/

Outline

1 Calculating the Relic Abundance
The axion EOM
How hard can it be?

2 MiMeS
MiMeS
MiMeS under the hood
How to get MiMeS
Configure (and make)
Classes
Template arguments
MiMeS from python
Assumptions
What MiMeS expects from you

3 Examples
python
C++

4 Outlook

Calculating the Relic Abundance

1 Calculating the Relic Abundance
The axion EOM
How hard can it be?

2 MiMeS
MiMeS
MiMeS under the hood
How to get MiMeS
Configure (and make)
Classes
Template arguments
MiMeS from python
Assumptions
What MiMeS expects from you

3 Examples
python
C++

4 Outlook

The axion EOM

Axions and ALPs follow a similar equation of motion (EOM):(
d2

dt2
+ 3H(t)

d

dt

)
θ(t) + m̃a

2(t) sin θ(t) = 0 ,

where θ = Afa, with A the axion filed, and fa some energy scale that
characterises the potential (Peccei-Quinn breaking scale).

1/28

How hard can it be?

Hard (in general).

The classical analogue is the dumped pendulum with both frequency
(length) and friction being time-dependent:

There is no closed form solution.
There are no constants of motion. 1

No package/library/program available!

MiMeS simulates the evolution of the axion/ALP, for (virtually) any
cosmological scenario and axion/ALP (thermal) mass.

1There is the adiabatic invariant, J , but it only helps us if the Hamiltonian varies
slowly.

2/28

How hard can it be?

Hard (in general).

The classical analogue is the dumped pendulum with both frequency
(length) and friction being time-dependent:

There is no closed form solution.
There are no constants of motion. 1

No package/library/program available!

MiMeS simulates the evolution of the axion/ALP, for (virtually) any
cosmological scenario and axion/ALP (thermal) mass.

1There is the adiabatic invariant, J , but it only helps us if the Hamiltonian varies
slowly.

2/28

How hard can it be?

Hard (in general).

The classical analogue is the dumped pendulum with both frequency
(length) and friction being time-dependent:

There is no closed form solution.
There are no constants of motion. 1

No package/library/program available!

MiMeS simulates the evolution of the axion/ALP, for (virtually) any
cosmological scenario and axion/ALP (thermal) mass.

1There is the adiabatic invariant, J , but it only helps us if the Hamiltonian varies
slowly.

2/28

MiMeS

1 Calculating the Relic Abundance
The axion EOM
How hard can it be?

2 MiMeS
MiMeS
MiMeS under the hood
How to get MiMeS
Configure (and make)
Classes
Template arguments
MiMeS from python
Assumptions
What MiMeS expects from you

3 Examples
python
C++

4 Outlook

MiMeS

We need accurate code that solves the EOM, but most importantly
we need reproducible results!
First of all:

MiMeS is a C++ header-only library that contains various
templated classes; there is no “installation" and no special
procedures, just include the header files.
MiMeS comes with a python interface so that everybody can
use it.
MiMeS is distributed under the MIT license; you can do whatever
you want with it, and I am not responsible.

MiMeS also
Is easy to use; anyone can run it and see if their model can work
or check against the literature.
Is reasonably fast; less than 0.05 s for the scenarios tested.
Provides full access to results and their errors, which can help
determine if the results are accurate.
Asks the user to decide when to start, stop, and when
adiabaticity is reached; no guesses anywhere!

3/28

MiMeS under the hood

MiMeS relies on NaBBODES 2 for the numerical integration, and
SimpleSplines 3 for the various interpolations.

Advantages:
You only need to have the standard C++ library.
The two libraries are developed by myself, so their integration
with MiMeS is seamless.
There is always going to be a compatible version of these
libraries that works with MiMeS.

Disadvantages:
These are not well tested libraries.
No community of contributors; if it doesn’t work, I have to fix it.
Slow development.

2 https://github.com/dkaramit/NaBBODES.
3 https://github.com/dkaramit/SimpleSplines.

4/28

https://github.com/dkaramit/NaBBODES
https://github.com/dkaramit/SimpleSplines

How to get MiMeS

There are several ways you can get a stable version of MiMeS:
1

git clone -b stable https://github.com/dkaramit/MiMeS.git.
This is the preferred way, as it is guaranteed to be the latest
stable version.

2 Go to mimes.hepforge.org/downloads, and download it.
3 Go to github.com/dkaramit/MiMeS/releases, and download a

released version.
You can get the most up-to-date code – not always the most stable
one – including the latest version of NaBBODES and
SimpleSplines, by running

1 git clone https://github.com/dkaramit/MiMeS.git
2 cd MiMeS
3 git submodule init
4 git submodule update --remote

5/28

https://mimes.hepforge.org/downloads
https://github.com/dkaramit/MiMeS/releases

Configure (and make)

There is no need to install anything if you are going to use MiMeS in a
C++ program. The only thing you must do is run

1 bash configure.sh

Alter that, you can include the header file MiMeS/MiMeS.hpp, and you
are good to go.
However, you can also run

make lib, in order to produce the (shared) libraries. This is
needed in order to run the python interface.
make examples, in order to compile the examples in
MiMeS/UserSpace/Cpp.
make exec, in order to produce some test executables (in
MiMeS/exec). You just need to run then in order to see if you get
any segfaults.

6/28

Classes

There are three classes useful to the user. 4

mimes::Cosmo<LD>: interpolation of relativistic degrees of
freedom of the plasma. By default it uses the EOS2020 5 data.
The user can choose another file easily.
mimes::AxionMass<LD>: definition of axion/ALP mass as a
function of the temperature and fa. MiMeS is shipped with data
from Lattice calculation 6 of the QCD axion mass.
mimes::Axion<LD,Solver,Method>: This is responsible for
actually solving the EOM.

4 There are various arguments that need to be passed to the constructors, and the are all listed and explained
in the Appendix of the documentation.

5 K. Saikawa and S. Shirai, JCAP 08 (2020), 011 [arXiv:2005.03544 [hep-ph]].
6 S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages,

A. Pasztor and F. Pittler, et al. Nature 539 (2016) no.7627, 69-71 [arXiv:1606.07494 [hep-lat]].

7/28

https://doi.org/10.1088/1475-7516/2020/08/011
https://arxiv.org/abs/2005.03544
https://doi.org/10.1038/nature20115
https://arxiv.org/abs/1606.07494

Classes

There are three classes useful to the user. 4

mimes::Cosmo<LD>: interpolation of relativistic degrees of
freedom of the plasma. By default it uses the EOS2020 5 data.
The user can choose another file easily.

mimes::AxionMass<LD>: definition of axion/ALP mass as a
function of the temperature and fa. MiMeS is shipped with data
from Lattice calculation 6 of the QCD axion mass.
mimes::Axion<LD,Solver,Method>: This is responsible for
actually solving the EOM.

4 There are various arguments that need to be passed to the constructors, and the are all listed and explained
in the Appendix of the documentation.

5 K. Saikawa and S. Shirai, JCAP 08 (2020), 011 [arXiv:2005.03544 [hep-ph]].
6 S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages,

A. Pasztor and F. Pittler, et al. Nature 539 (2016) no.7627, 69-71 [arXiv:1606.07494 [hep-lat]].

7/28

https://doi.org/10.1088/1475-7516/2020/08/011
https://arxiv.org/abs/2005.03544
https://doi.org/10.1038/nature20115
https://arxiv.org/abs/1606.07494

Classes

There are three classes useful to the user. 4

mimes::Cosmo<LD>: interpolation of relativistic degrees of
freedom of the plasma. By default it uses the EOS2020 5 data.
The user can choose another file easily.
mimes::AxionMass<LD>: definition of axion/ALP mass as a
function of the temperature and fa. MiMeS is shipped with data
from Lattice calculation 6 of the QCD axion mass.

mimes::Axion<LD,Solver,Method>: This is responsible for
actually solving the EOM.

4 There are various arguments that need to be passed to the constructors, and the are all listed and explained
in the Appendix of the documentation.

5 K. Saikawa and S. Shirai, JCAP 08 (2020), 011 [arXiv:2005.03544 [hep-ph]].
6 S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages,

A. Pasztor and F. Pittler, et al. Nature 539 (2016) no.7627, 69-71 [arXiv:1606.07494 [hep-lat]].

7/28

https://doi.org/10.1088/1475-7516/2020/08/011
https://arxiv.org/abs/2005.03544
https://doi.org/10.1038/nature20115
https://arxiv.org/abs/1606.07494

Classes

There are three classes useful to the user. 4

mimes::Cosmo<LD>: interpolation of relativistic degrees of
freedom of the plasma. By default it uses the EOS2020 5 data.
The user can choose another file easily.
mimes::AxionMass<LD>: definition of axion/ALP mass as a
function of the temperature and fa. MiMeS is shipped with data
from Lattice calculation 6 of the QCD axion mass.
mimes::Axion<LD,Solver,Method>: This is responsible for
actually solving the EOM.

4 There are various arguments that need to be passed to the constructors, and the are all listed and explained
in the Appendix of the documentation.

5 K. Saikawa and S. Shirai, JCAP 08 (2020), 011 [arXiv:2005.03544 [hep-ph]].
6 S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages,

A. Pasztor and F. Pittler, et al. Nature 539 (2016) no.7627, 69-71 [arXiv:1606.07494 [hep-lat]].

7/28

https://doi.org/10.1088/1475-7516/2020/08/011
https://arxiv.org/abs/2005.03544
https://doi.org/10.1038/nature20115
https://arxiv.org/abs/1606.07494

Template arguments

You need to choose what numeric type to use. This is done by the
template argument LD which should be double (fast) or long double

(accurate). 7

You also need to tell MiMeS which integration strategy to use. This is
done by choosing template arguments:

Solver can be set to 1 for Rosenbrock (semi-implicit
Runge-Kutta). The Method argument in this case can be:

RODASPR2<LD> (4th order).
ROS34PW2<LD> (3rd order).
ROS3W<LD> (2rd order, very bad).

Solver can be set to 2 for explicit RK. The Method argument can
be:

DormandPrince<LD> (7th order)
CashKarpRK45<LD> (5th order, very bad).
RK45<LD> (5th order, very bad).

7 You could choose float, but we live in 2021.

8/28

MiMeS from python

In order to call the python interface of MiMeS, we need to first call
make lib in the root directory of MiMeS.

Before that, we can take some time to decide what the template
arguments and compilation options should be. In the file
MiMeS/Definitions.mk, you can change the variables:

LONGpy=long will compile the library with long double numeric
types. LONGpy= will compile the library with double numeric
types.
SOLVER and METHOD, as in the template arguments.

Also, in the same file, you can change compilation options:
Compiler:

CC=g++ in order to use the GNU C++ compiler.
CC=clang -lstdc++ in order to use the clang C++ compiler.

Optimization level:
OPT=O0: No optimization.
OPT=O1, O2, or O3: all these perform mostly the same (read the
compiler documentation for more information on the optimization).
OPT=Ofast: full optimization (fast, but dangerous).

9/28

Assumptions

MiMeS is designed to make as few assumptions as possible.
However, it still assumes that:

1 H/m̃a increases monotonically with the temperature.
2 θ̇(0) = 0. This will be changed in the future.
3 The energy density of the axion/ALP is always subdominant.
4 Only the EOM determines the energy density (no annihilations,

no strings, etc.).

10/28

Assumptions

MiMeS is designed to make as few assumptions as possible.
However, it still assumes that:

1 H/m̃a increases monotonically with the temperature.

2 θ̇(0) = 0. This will be changed in the future.
3 The energy density of the axion/ALP is always subdominant.
4 Only the EOM determines the energy density (no annihilations,

no strings, etc.).

10/28

Assumptions

MiMeS is designed to make as few assumptions as possible.
However, it still assumes that:

1 H/m̃a increases monotonically with the temperature.
2 θ̇(0) = 0. This will be changed in the future.

3 The energy density of the axion/ALP is always subdominant.
4 Only the EOM determines the energy density (no annihilations,

no strings, etc.).

10/28

Assumptions

MiMeS is designed to make as few assumptions as possible.
However, it still assumes that:

1 H/m̃a increases monotonically with the temperature.
2 θ̇(0) = 0. This will be changed in the future.
3 The energy density of the axion/ALP is always subdominant.

4 Only the EOM determines the energy density (no annihilations,
no strings, etc.).

10/28

Assumptions

MiMeS is designed to make as few assumptions as possible.
However, it still assumes that:

1 H/m̃a increases monotonically with the temperature.
2 θ̇(0) = 0. This will be changed in the future.
3 The energy density of the axion/ALP is always subdominant.
4 Only the EOM determines the energy density (no annihilations,

no strings, etc.).

10/28

What MiMeS expects from you

Apart from θini and fa, keep in mind that MiMeS needs:

1 The mass of the axion/ALP. A data file or an actual function.
2 Data file with log a/ai (ai is some arbitrary value; MiMeS rescales

it appropriately), T , and logH of the underlying cosmology.
3 Value for 3H/m̃a � 1, which defines the point where integration

begins.
4 At which point the adiabatic invariant is constant enough so that

numerical integration can stop.
5 Other input, related to the algorithm, that might confuse you; e.g.

temperature at which integration stops no matter what!

11/28

What MiMeS expects from you

Apart from θini and fa, keep in mind that MiMeS needs:
1 The mass of the axion/ALP. A data file or an actual function.

2 Data file with log a/ai (ai is some arbitrary value; MiMeS rescales
it appropriately), T , and logH of the underlying cosmology.

3 Value for 3H/m̃a � 1, which defines the point where integration
begins.

4 At which point the adiabatic invariant is constant enough so that
numerical integration can stop.

5 Other input, related to the algorithm, that might confuse you; e.g.
temperature at which integration stops no matter what!

11/28

What MiMeS expects from you

Apart from θini and fa, keep in mind that MiMeS needs:
1 The mass of the axion/ALP. A data file or an actual function.
2 Data file with log a/ai (ai is some arbitrary value; MiMeS rescales

it appropriately), T , and logH of the underlying cosmology.

3 Value for 3H/m̃a � 1, which defines the point where integration
begins.

4 At which point the adiabatic invariant is constant enough so that
numerical integration can stop.

5 Other input, related to the algorithm, that might confuse you; e.g.
temperature at which integration stops no matter what!

11/28

What MiMeS expects from you

Apart from θini and fa, keep in mind that MiMeS needs:
1 The mass of the axion/ALP. A data file or an actual function.
2 Data file with log a/ai (ai is some arbitrary value; MiMeS rescales

it appropriately), T , and logH of the underlying cosmology.
3 Value for 3H/m̃a � 1, which defines the point where integration

begins.

4 At which point the adiabatic invariant is constant enough so that
numerical integration can stop.

5 Other input, related to the algorithm, that might confuse you; e.g.
temperature at which integration stops no matter what!

11/28

What MiMeS expects from you

Apart from θini and fa, keep in mind that MiMeS needs:
1 The mass of the axion/ALP. A data file or an actual function.
2 Data file with log a/ai (ai is some arbitrary value; MiMeS rescales

it appropriately), T , and logH of the underlying cosmology.
3 Value for 3H/m̃a � 1, which defines the point where integration

begins.
4 At which point the adiabatic invariant is constant enough so that

numerical integration can stop.

5 Other input, related to the algorithm, that might confuse you; e.g.
temperature at which integration stops no matter what!

11/28

What MiMeS expects from you

Apart from θini and fa, keep in mind that MiMeS needs:
1 The mass of the axion/ALP. A data file or an actual function.
2 Data file with log a/ai (ai is some arbitrary value; MiMeS rescales

it appropriately), T , and logH of the underlying cosmology.
3 Value for 3H/m̃a � 1, which defines the point where integration

begins.
4 At which point the adiabatic invariant is constant enough so that

numerical integration can stop.
5 Other input, related to the algorithm, that might confuse you; e.g.

temperature at which integration stops no matter what!

11/28

Examples

1 Calculating the Relic Abundance
The axion EOM
How hard can it be?

2 MiMeS
MiMeS
MiMeS under the hood
How to get MiMeS
Configure (and make)
Classes
Template arguments
MiMeS from python
Assumptions
What MiMeS expects from you

3 Examples
python
C++

4 Outlook

python

Define everything and solve in just a few lines of code!
1 from time import time; from sys import stderr #you need these in order to print the time in stderr
2
3 #add the relative path for MiMeS/src
4 from sys import path as sysPath; sysPath.append(’../src’)
5
6 from interfacePy.AxionMass import AxionMass #import the AxionMass class
7 from interfacePy.Axion import Axion #import the Axion class
8 from interfacePy.Cosmo import mP #import the Planck mass
9

10 def main():
11
12 # AxionMass instance
13 axionMass = AxionMass(r’../src/data/chi.dat’,0,mP)
14
15 # define m̃a

2 for T ≤ Tmin
16 TMin, chiMin=axionMass.getTMin(), axionMass.getChiMin()
17
18 axionMass.set_ma2_MIN(lambda T,fa: chiMin/fa/fa)
19
20 # define m̃a

2 for T ≥ Tmax
21 TMax, chiMax=axionMass.getTMax(), axionMass.getChiMax()
22
23 axionMass.set_ma2_MAX(lambda T,fa: chiMax/fa/fa*pow(TMax/T,8.16))
24
25 #in python it is more convenient to use relative paths
26 inputFile="../UserSpace/InputExamples/MatterInput.dat"
27
28 ax = Axion(0.1, 1e16, 500, 1e−4, 1e3, 10, 1e−2, inputFile, axionMass,
29 1e−2, 1e−8, 1e−2, 1e−10, 1e−10, 0.85, 1.5, 0.85, int(1e7))
30
31 ax.solveAxion()
32
33 print("theta_i=",ax.theta_i,"\t\t\t\t","f_a=",ax.fa,"GeV\n","theta_osc~=",
34 ax.theta_osc,"\t","T_osc~=",ax.T_osc,"GeV \n","Omega h^2=",ax.relic)
35
36 #once we are done we should run the destructor
37 del ax,axionMass
38
39 if __name__ == ’__main__’:
40 _=time()
41 main()
42 print(round(time()−_,3),file=stderr)

12/28

C++

Notice: C++ and python are quite similar!
1 #include<iomanip>
2 #include"MiMeS.hpp"
3
4 using numeric = long double;//make life easier if you want to change to double
5
6 int main(){
7 mimes::util::Timer _timer_;//use this to time it!
8
9 // use chi_PATH to interpolate the axion mass.

10 mimes::AxionMass<numeric> axionMass(chi_PATH,0,mimes::Cosmo<numeric>::mP);
11
12 /∗set m̃a

2 for T ≥ Tmax∗/
13 numeric TMax=axionMass.getTMax(), chiMax=axionMass.getChiMax();
14
15 axionMass.set_ma2_MAX(
16 [&chiMax,&TMax](numeric T, numeric fa){ return chiMax/fa/fa*std::pow(T/TMax,−8.16);}
17);
18
19 /∗set m̃a

2 for T ≤ Tmin∗/
20 numeric TMin=axionMass.getTMin(), chiMin=axionMass.getChiMin();
21
22 axionMass.set_ma2_MIN(
23 [&chiMin,&TMin](numeric T, numeric fa){ return chiMin/fa/fa;}
24);
25
26 /∗this path contains the cosmology∗/
27 std::string inputFile = std::string(rootDir)+
28 std::string("/UserSpace/InputExamples/MatterInput.dat");
29
30 /∗declare an instance of Axion∗/
31 mimes::Axion<numeric, 1, RODASPR2<numeric> > ax(0.1, 1e16, 500, 1e−4, 1e3, 10, 1e−2,
32 inputFile, &axionMass, 1e−2, 1e−8, 1e−2, 1e−10, 1e−10, 0.85, 1.5, 0.85,
33 int(1e7));
34 /∗solve the EOM!∗/
35 ax.solveAxion();
36
37 std::cout<<std::setprecision(5)
38 <<"theta_i="<<ax.theta_i<<std::setw(25)<<"f_a="<<ax.fa<<" GeV\n"<<"theta_osc~="<<ax.theta_osc
39 <<std::setw(20)<<"T_osc~="<<ax.T_osc<<"GeV \n"<<"Omega h^2="<<ax.relic<<"\n";
40
41 return 0;
42 }

13/28

Outlook

1 Calculating the Relic Abundance
The axion EOM
How hard can it be?

2 MiMeS
MiMeS
MiMeS under the hood
How to get MiMeS
Configure (and make)
Classes
Template arguments
MiMeS from python
Assumptions
What MiMeS expects from you

3 Examples
python
C++

4 Outlook

Outlook

What we saw:

MiMeS solves the axion/ALP EOM.
MiMeS treats both the mass and the underlying cosmology as
user inputs.
MiMeS allows the user to change a number of other things, from
the plasma RDOFs to the convergence conditions.

MiMeS may be amended in the future because:

MiMeS should allow the user to consider different initial value of
θ̇; the "kinematic" MiMeS might come soon.
MiMeS should be able to handle non-vanishing RHS; i.e. solve
the "driven" dumped time-dependent pendulum.
MiMeS should be able to compare against searches on the fly.

14/28

Thank you!
Breakdown of MiMeS:

--
Language files comment code
--
C/C++ Header 35 444 1595
C++ 20 198 1106
Python 22 367 1000
--
SUM: 77 1009 3701--

https://github.com/dkaramit/MiMeS
https://mimes.hepforge.org

Backup
(equations, derivations, tables)

WKB – I

(
d2

dt2
+ 3H(t)

d

dt
+ m̃a

2(t)

)
θ(t) = 0 .

Reparametrize by introducing

θtrial = exp

[
i

∫
dt
(
ψ(t) + 3/2 i H(t)

)]
.

The Eome, then becomes just

ψ2 = Ω2 + i ψ̇ ,

with Ω2 = m̃a
2 − 9

4
H2 − 3

2
Ḣ. The solution takes the form

ψ = ±
√

Ω2 + iψ̇. However, for ψ̇ � Ω2 and Ω̇� Ω2, it can be
approximated as

ψ ≈ ±Ω +
i

2

d log Ω

dt
.

WKB – II

So, after applying the initial conditions, the EOM is solved by

θ(t) ≈ θini

√
Ωini

Ω(t)

(
a

aini

)−3/2

cos

(∫ t

tini

dt′ Ω(t′)

)
.

Taking tini = tosc (i.e. θ̇(tosc) = 0, which is not generally good), have

θ(t) ≈ θosc

(
3

4

)1/4
√
m̃a|t=tosc
m̃a(t)

(
a

aosc

)−3/2

cos

(∫ t

tosc

dt′ m̃a(t′)

)
,

where θosc = θ|t=tosc . This equation is further simplified if we assume
that θosc ≈ θini (again not really good), i.e.

θ(t) ≈ θini

(
3

4

)1/4
√
m̃a|t=tosc
m̃a(t)

(
a

aosc

)−3/2

cos

(∫ t

tosc

dt′ m̃a(t′)

)
.

Adiabatic invariant – I

Given a system with Hamiltonian H(θ, p; t), the equations of motion
are

ṗ = −∂H
∂θ

, θ̇ =
∂H
∂p

.

Also,

dH = θ̇ dp− ṗ dθ +
∂H
∂t

dt .

If this system exhibits closed orbits (e.g. if it oscillates), we define

J ≡ C
∮
p dθ ,

where the integral is over a closed path (e.g. a period, T), and C
indicates that J can always be rescaled with a constant. If the
Hamiltonian varies slowly during a cycle,

dJ

dt
= C

∮ (
ṗ dθ + p dθ̇

)
= C

∫ t+T

t

∂H
∂t′

dt′ ≈ T ∂H(t′)

∂t′

∣∣∣
t′=t
≈ 0 .

So, J is an adiabatic invariant!

Adiabatic invariant – II
The Hamiltonian that results in the EOM

H =
1

2

p2

fa2 a3
+ V (θ) a3 ,

with

p = fa
2 a3 θ̇

V (θ) = m̃a
2fa

2(1− cos θ) .

If H varies slowly – ˙̃ma(T)/m̃a � m̃a and H � m̃a, then

J =

∮
p dθ

πfa2
=

1

πfa2

∮ √
2 (H(θ)− V (θ) a3) fa2a3 dθ

=
2

πfa2

∫ θpeak

−θpeak

√
2 (H(θpeak)− V (θ) a3) fa2a3 dθ

=
2
√

2

πfa

∫ θpeak

−θpeak

√
V (θpeak)− V (θ)a3dθ

=
2
√

2

π
m̃a a

3

∫ θpeak

−θpeak

√
cos θ − cos θpeak dθ ,

is the adiabatic invariant – up to a multiplication with a constant.

C++ Input

AxionMass class – Definition via file
In order to define an instance of the AxionMass class that interpolates the m̃a, use
the constructor:

1 template<class LD>
2 mimes::AxionMass<LD>(std::string chi_PATH, LD minT=0, LD maxT=mimes::Cosmo::mP)

The arguments are:
1 chi_Path: Relative or absolute path to data file with T (in GeV), χ(T) (in

GeV4).
2 minT, maxT: Interpolation limits. These are used in order to stop the

interpolation at the closest temperatures that exist in the data file. This means
that the actual interpolation limits are Tmin ≥minT and Tmax ≤maxT. Beyond
these limits hat axion mass is assumed to be constant.

The definition of m̃a
2 beyond Tmin and Tmax can be changed to realistic function,

using mimes::AxionMass<LD>::set_ma2_MIN(std::function<LD(LD,LD)> ma2_MIN)
and mimes::AxionMass<LD>::set_ma2_MAX(std::function<LD(LD,LD)> ma2_MAX).
These definitions may need the actual values of Tmin,max and χ(Tmin,max). These are
obtained from

template<class LD> LD mimes::AxionMass<LD>::getTMin(): This function
returns the minimum interpolation temperature, Tmin.
template<class LD> LD mimes::AxionMass<LD>::getTMax(): This function
returns the maximum interpolation temperature, Tmax.
template<class LD> LD mimes::AxionMass<LD>::getChiMin(): This function
returns χ(Tmin).
template<class LD> LD mimes::AxionMass<LD>::getChiMax(): This function
returns χ(Tmax).

Note that all std::function<LD(LD,LD)> can be any callable object that takes T and fa
and returns m̃a

2.

AxionMass class – Definition via function

In order to define an instance of the AxionMass class via a function, use the
constructor:

1 template<class LD>
2 mimes::AxionMass<LD>(std::function<LD(LD,LD)> ma2)

Here, ma2 can be any callable object that takes T and fa and returns m̃a
2.

Axion class – Expected input
The constructor of the Axion class is

1 template<class LD, const int Solver, class Method>
2 mimes::Axion<LD, Solver, Method>(LD theta_i, LD fa, LD umax, LD TSTOP,
3 LD ratio_ini, unsigned int N_convergence_max, LD convergence_lim,
4 std::string inputFile, AxionMass<LD> *axionMass, LD initial_step_size=1e−2,
5 LD minimum_step_size=1e−8, LD maximum_step_size=1e−2,
6 LD absolute_tolerance=1e−8, LD relative_tolerance=1e−8, LD beta=0.9,
7 LD fac_max=1.2, LD fac_min=0.8, unsigned int maximum_No_steps=10000000)

The input that MiMeS expects is:
1 theta_i: Initial angle.
2 fa The PQ scale.
3 umax: Once u = log a/ai >umax, the integration stops. Typical value: ∼ 500.
4 TSTOP: Once T <TSTOP, integration stops. Typical value: 10−4 GeV.
5 ratio_ini: Integration starts at u with 3H/m̃a ≈ratio_ini. Typical value:

∼ 103.
6 N_convergence_max, convergence_lim: Integration stops when the

relative difference between two consecutive peaks is less than
convergence_lim for N_convergence_max consecutive peaks.

7 inputFile: Relative (or absolute) path to a file that describes the cosmology.
The columns should be: u T [GeV] logH, with acceding u. Entropy injection
should have stopped before the lowest temperature of given in inputFile.

8 axionMass: Instance of mimes::AxionMass<LD> class. In C++ this
instance is passed as a pointer to the constructor of the
mimes::Axion<LD,Solver,Method> class, while in python it is simply
passed as a variable.

Axion class – Optional input

The optional input, relative to the RK algorithm, is:

1 initial_stepsize: Initial step-size of the solver. Default value: 10−2.
2 minimum_stepsize: Lower limit of the step-size. Default value: 10−8.
3 maximum_stepsize: Upper limit of the step-size. Default value: 10−2.
4 absolute_tolerance: Absolute tolerance of the RK solver. Default value:

10−8.
5 relative_tolerance: Relative tolerance of the RK solver. Default value:

10−8.
6 beta: Aggressiveness of the adaptation strategy. Default value: 0.9.
7 fac_max, fac_min: The step-size does not change more than fac_max and

less than fac_min within a trial step. Default values: 1.2 and 0.8, respectively.
8 maximum_No_steps: If integration needs more than maximum_No_steps

integration stops. Default value: 107.

python Input

AxionMass class – Definition via file

The actual constructor of the AxionMass in the python interface is
AxionMass(*args). However, it is intended to be used in only two ways.
In order to define an instance of the AxionMass class that interpolates the m̃a, use
the constructor as:

1 AxionMass(chi_PATH, minT=0, maxT=Cosmo.mP)

The arguments are the same as in the C++ case.

The definition of m̃a
2 beyond Tmin and Tmax can be changed using

AxionMass.set_ma2_MIN(ma2_MIN) and AxionMass.set_ma2_MAX(ma2_MAX).
These definitions may need the actual values of Tmin,max and χ(Tmin,max). These are
obtained from

AxionMass.getTMin(): This function returns the minimum interpolation
temperature, Tmin.
AxionMass.getTMax(): This function returns the maximum interpolation
temperature, Tmax.
AxionMass.getChiMin(): This function returns χ(Tmin).
AxionMass.getChiMax(): This function returns χ(Tmax).

The difference between the C++ case is that ma2 cannot be any callable object; it has
to be a regular function that takes T and fa and returns m̃a

2.

AxionMass class – Definition via function

In order to define an instance of the AxionMass class via a function, use the
constructor as:

1 AxionMass(ma2)

The difference between the C++ case is that ma2 cannot be any callable object; it has
to be a regular function that takes T and fa and returns m̃a

2.

Axion class

The constructor of the Axion class is

1 Axion(theta_i, fa, umax, TSTOP, ratio_ini, N_convergence_max, convergence_lim, inputFile,
2 axionMass, initial_step_size=1e−2, minimum_step_size=1e−8, maximum_step_size=1e−2,
3 absolute_tolerance=1e−8, relative_tolerance=1e−8, beta=0.9, fac_max=1.2, fac_min=0.8,
4 maximum_No_steps=10000000)

All the arguments are the same as in the C++ case. The only difference is that the
AxionMass instance (axionMass) is not passed as a pointer, as there is no direct way
to do it in python. However, the underlying object is the same, as it is converted
internally using ctypes.

Files and compilation
variables

Paths.mk

There are some paths to file that the user can provide in order to use
different data for the RDOF, anharmonic factor, and χ (optional).
These paths are stored as strings in MiMeS/src/misc_dir/path.hpp

when bash configure.sh is run.
These paths can be changed by changing the following variables in
MiMeS/Paths.mk:

cosmoDat: Relative path to data file with T (in GeV), heff , geff .
axMDat: Relative path to data file with T (in GeV), heff , geff . This
variable can be ommitted if the user indents to define all masses
via functions.
anFDat: Relative path to data file with θpeak, f(θpeak).

It is advisable that if the paths change bash configure.sh and make

should be run.

Template arguments

You need to choose what numeric type to use. This is done by the
template argument LD which should be double (fast) or long double

(accurate). 8

You also need to tell MiMeS which integration strategy to use. This is
done by choosing template arguments:

Solver can be set to 1 for Rosenbrock (semi-implicit
Runge-Kutta). The Method argument in this case can be:

RODASPR2<LD> (4th order).
ROS34PW2<LD> (3rd order).
ROS3W<LD> (2rd order, very bad).

Solver can be set to 2 for explicit RK. The Method argument can
be:

DormandPrinceRK45<LD> (7th order)
CashKarpRK45<LD> (5th order, very bad).
RK45<LD> (5th order, very bad).

8 You could choose float, but we live in 2021.

Definitions.mk
In order to call the python interface of MiMeS, we need to first call
make lib in the root directory of MiMeS.

Before that, we can take some time to decide what the template
arguments and compilation options should be. In the file
MiMeS/Definitions.mk, you can change the variables:

LONGpy=long will compile the library with long double numeric
types. LONGpy= will compile the library with double numeric
types.
SOLVER and METHOD, as in the template arguments.

Also, in the same file, you can change compilation options:
Compiler:

CC=g++ in order to use the GNU C++ compiler.
CC=clang -lstdc++ in order to use the clang C++ compiler.

Optimization level:
OPT=O0: No optimization.
O=O1, O2, or O3: all these perform mostly the same (read the
compiler documentation for more information on the optimization).
OPT=Ofast: full optimization (fast, but dangerous).

	Calculating the Relic Abundance
	The axion EOM
	How hard can it be?

	MiMeS
	MiMeS
	MiMeS under the hood
	How to get MiMeS
	Configure (and make)
	Classes
	Template arguments
	MiMeS from python
	Assumptions
	What MiMeS expects from you

	Examples
	python
	C++

	Outlook

