

Probing Bottom Quark Yukawa Couplings at Future Electron-Proton Colliders

Two Days with Particle Physics Workshop at Shahid Beheshti University

Presented by: Reza Jafari*

In Collaboration with: Hamzeh Khanpour, Mojtaba Mohammadi Najafabadi

School of Particles and Accelerators, IPM

18 Nov. 2021

* jafari@ipm.ir

OUTLINE

- Introduction & Motivation
- Theoretical framework
- Data Simulation
- Analysis strategy
- Results & discussion

Conclusion

- After the Higgs boson discovery, the focus shifted toward understanding its couplings to other particles, in particular to the fermions.
- Exploring CP nature of the Higgs couplings has become very important.

CP violation in the Higgs sector \rightarrow impact on baryogensis problem

The Yukawa coupling of h to the 3rd generation fermions is larger. Therefore, studying of CP properties with them play an important role.

- To check the consistency of the SM and beyond.
- Extensive studies have been performed over the years to assess the feasibility of this measurement.
- Nevertheless, the observation of the $H \rightarrow bb$ decay remains very challenging at the LHC.

Recently, there has been a consideration for high energy ep collisions LHC.

A rich physics program

Very exciting prospects

Direct extraction of y_b

 Tentative schedule for the LHeC project.

Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	RF Proto Type Development												
	RF Production and Test Stand Operation												
			Magn Prese	et ries									
					Magnet Production and Testing								
				Legal Prepa	ration								
						Civil E	nginee	ring					
									Infra- struct	ure			
										Install	ation		
												Opera	tion

• Other ep colliders more than LHeC at CERN:

• Benchmarks: $E_e = 60 \, {
m GeV}$

	Unit	LH eC	HE-LHeC	FCC-eh	FCC-eh
E_p	TeV	7	13.5	20	50
\sqrt{s}	TeV	1.30	1.77	2.2	3.46

$$\sqrt{s} = 2\sqrt{E_p E_e}$$

Future Circular Collider Circumference: 90 -100 km Energy: 100 TeV (pp) 90-350 GeV (e*e⁻)

Large Hadron Collider(LHC) Large Electron-Positron Collider (LEP) Circumference: 27 km Energy: 14 TeV (pp) 209 GeV (e*e*)

Tevatron Circumference: 6.2 km Energy: 2 TeV(pp)

Higgs Production at ep collision:

Leading order SM diagrams for CC (NC) processes:

VBF processes:

$$eq \to \nu_e Hq'$$
 and $eq \to eHq$

the production rate of CC is larger than NC process by about a factor of 4 - 6

THEORETICAL FRAMEWORK

The effective Lagrangian for mass and Yukawa terms: [arXiv:9909265]

$$\begin{split} \mathcal{L}_{f} = & \frac{y_{f}v}{\sqrt{2}} \left[1 + \frac{v^{2}}{2\Lambda^{2}} \frac{X_{R}^{f} + iX_{I}^{f}}{y_{f}} \right] \overline{f_{L}} f_{R} + \frac{y_{f}}{\sqrt{2}} \left[1 + \frac{3v^{2}}{2\Lambda^{2}} \frac{X_{R}^{f} + iX_{I}^{f}}{y_{f}} \right] \overline{f_{L}} f_{R}h \\ & + \frac{3v}{2\sqrt{2}\Lambda^{2}} \left(X_{R}^{f} + iX_{I}^{f} \right) \overline{f_{L}} f_{R}hh + \frac{1}{2\sqrt{2}\Lambda^{2}} \left(X_{R}^{f} + iX_{I}^{f} \right) \overline{f_{L}} f_{R}hhh \end{split}$$

- Λ : the energy scale of new physics
- *Y_f*:Yukawa coupling for the relevant fermion
- $X_{R,I}$: Real and Imaginary part of coefficients of the dimension-six terms.

DATA SIMULATION

• Dimension-six operator coefficients $X_{LR} = 0.1$, with $\Lambda = 1$ TeV.

DATA SIMULATION

• LHeC & FCC-eh benchmarks

C.M. Energy (TeV)	1.3	3.46	3.46	3.46
Integrated luminosity (ab ⁻¹)	1.0	1.0	2.0	10.0

• Signal process:

Background processes:

$$e^-p \to H j \nu_e$$
, where $H \to b \bar{b}$ in the effective Lagrangian

•
$$e^-p \to Zj\nu_e, Z \to b\bar{b}$$

• $e^-p \to Zj\nu_e, Z \to c\bar{c}$
• $e^-p \to Zj\nu_e, Z \to c\bar{c}$
• $e^-p \to \bar{t}j\nu_e, \bar{t} \to W^-\bar{b}, W^- \to jj$
• $e^-p \to Zj\nu_e, Z \to jj$
• $e^-p \to Hj\nu_e, H \to b\bar{b}$ in the SM

DATA SIMULATION

11

ANALYSIS STRATEGY

Event selection (preselection cuts)

- Exactly 2 b-tagged jet
- At least 3 jets (Including 1 forward jet)
- $P_T > 20$ GeV for all jets
- $|\eta| \le 2.5$ for b-tagged jets
- $\Delta R > 0.5$ GeV for all objects
- $-5 \leq \eta \leq 1$ for forward jet

To enhance the sensitivity, we perform a multivariate analysis (MVA)

Pseudorapidity of the forward jet in ep collision

ANALYSIS STRATEGY

ANALYSIS STRATEGY

MVA classification output:

Gradient Boosted Decision Tree

BDTG response

RESULTS

The coefficients bounds for the center of mass energies of 1.3 and 3.46 TeV with the corresponding integrated luminosities at 95% CL.

Coefficient	$1.3 \text{ TeV}, 1 \text{ ab}^{-1}$	$3.46 \text{ TeV}, 1 \text{ ab}^{-1}$	$3.46 \text{ TeV}, 2 \text{ ab}^{-1}$	$3.46 \text{ TeV}, 10 \text{ ab}^{-1}$
X_R^b	[-0.004, 0.542]	[-0.004, 0.533]	[-0.003, 0.532]	[-0.001, 0.530]
X_I^b	[-0.103, 0.022]	[-0.094, 0.022]	[-0.088, 0.016]	[-0.080, 0.008]

Upper limits on X^b_I is about one order of magnitude stronger, and on X^b_R is comparable with recent result in: <u>arXiv:2003.00099</u>

CONCLUSION

16

- After the Higgs boson discovery, the focus shifted toward understanding its couplings to other particles, in particular to the fermions. CP violation in the Higgs sector impact on baryogensis
- The Yukawa coupling of h to the 3rd generation fermions is larger.
- A crucial aspect is the measurement of the b-quark Yukawa coupling, and the observation of the H → bb decay remains very challenging at the LHC.
- Recently, there has been a consideration for high energy ep collisions with very exiting prospects.
- Effective Lagrangian with dimension-six operators is used to constrain b Yukawa coupling.
- Data simulation for the LHeC and FCC-eh benchmarks.
- A MVA approach with BDTG method is applied to suppress the background contributions.
- Limits at 95% CL on the coupling coefficients have been obtained for two center-of-mass energies of the LHeC and FCC-eh.
- We show that the MVA increases the sensitivity to the b-quark Yukawa couplings.

