Two Days with Particle Physics Workshop November 18, 2021

Generation of matter antimatter asymmetries and hypermagnetic fields by the chiral vortical effect of transient fluctuations

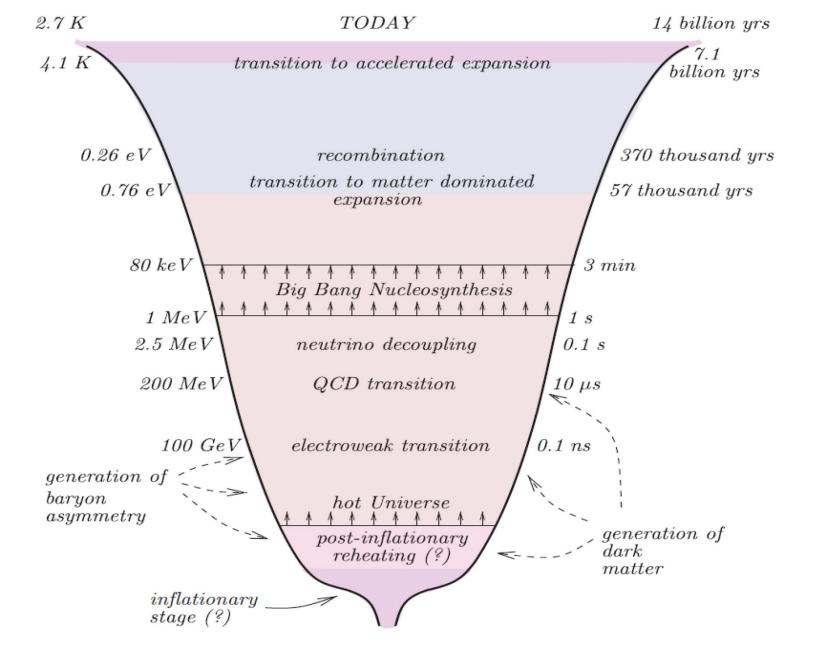
Shiva Rostam Zadeh

Institute for Research in Fundamental Sciences (IPM)

- 2001.03499 :
 - S. Abbaslu, S. Rostam Zadeh, M. Mehraeen and S. S. Gousheh

Content

- Baryogenesis and magnetogenesis
- Abelian anomaly and matter asymmetries
- CME and CVE in the AMHD equations
- Right-handed electrons
- Scenario



Stages of the evolution of the Universe

Observational data

Baryon asymmetry of the Universe

$$\eta_B \sim 10^{-10}$$

Large scale magnetic fields

Gamma rays from blazars:

$$B_0 \simeq 10^{-17} - 10^{-15} \text{G}$$
 $\lambda_0 \gtrsim 1 \text{Mpc}$

$$\lambda_0 \gtrsim 1 \mathrm{Mpc}$$

Sakharov Conditions for Baryogenesis:

- B violation
- C and CP violation
- Departure from thermal equilibrium

The Chiral Coupling of $U_Y(1)$ to Fermions

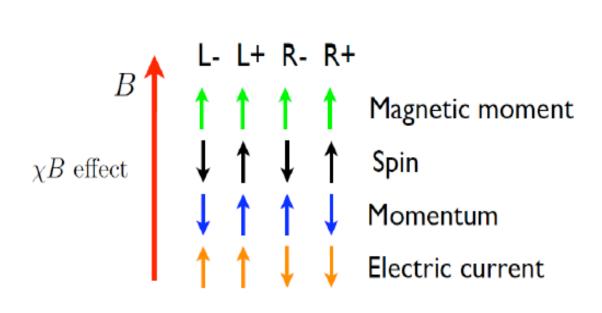
Anomaly leading to fermion number violation

$$\partial_{\mu} j_{\text{bar}}^{\mu} = \partial_{\mu} j_{\text{lep}}^{\mu} = \frac{N_g}{2} \left(\frac{g^2}{16\pi^2} W_{\mu\nu}^a \tilde{W}^{a\mu\nu} - \frac{g'^2}{16\pi^2} Y_{\mu\nu} \tilde{Y}^{\mu\nu} \right)$$

The chiral magnetic and vortical effects

Chiral magnetic effect (CME)

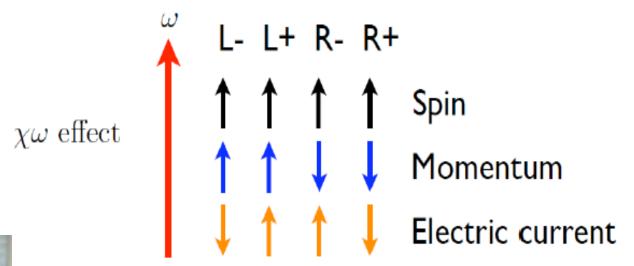
The CME is the generation of the electric current parallel to the magnetic field.



$$J_{\chi B} \propto [n(e_L^-) - n(e_R^+)] - [n(e_R^-) - n(e_L^+)]$$
$$J_{\chi B} = \frac{e^2}{2\pi^2} \Delta \mu B$$

Chiral vortical effect (CVE)

The CVE is the generation of the electric current along the vorticity field.



$$J_{\chi\omega} \propto [n(e_L^-) + n(e_R^+)] - [n(e_R^-) + n(e_L^+)]$$
$$J_{\chi\omega} = \frac{e}{4\pi^2} \Delta \mu^2 \ \omega$$

AMHD equations

$$\frac{1}{R}\vec{\nabla} \cdot \vec{E}_Y = 0, \quad \frac{1}{R}\vec{\nabla} \cdot \vec{B}_Y = 0,
\frac{1}{R}\vec{\nabla} \times \vec{E}_Y + \left(\frac{\partial \vec{B}_Y}{\partial t} + 2H\vec{B}_Y\right) = 0,
\frac{1}{R}\vec{\nabla} \times \vec{B}_Y - \left(\frac{\partial \vec{E}_Y}{\partial t} + 2H\vec{E}_Y\right) = \vec{J}
= \vec{J}_{\text{Ohm}} + \vec{J}_{\text{cv}} + \vec{J}_{\text{cm}},
\vec{J}_{\text{Ohm}} = \sigma \left(\vec{E}_Y + \vec{v} \times \vec{B}_Y\right),
\vec{J}_{\text{cv}} = c_V \vec{\omega},
\vec{J}_{\text{cm}} = c_B \vec{B}_Y,$$

Chiral vortical and magnetic coefficients

$$c_{v}(t) = \sum_{i=1}^{n_{G}} \left[\frac{g'}{24} \left(T_{R_{i}}^{2} - T_{L_{i}}^{2} + T_{d_{R_{i}}}^{2} - 2T_{u_{R_{i}}}^{2} + T_{Q_{i}}^{2} \right) + \frac{g'}{8\pi^{2}} \left(\mu_{R_{i}}^{2} - \mu_{L_{i}}^{2} + \mu_{d_{R_{i}}}^{2} - 2\mu_{u_{R_{i}}}^{2} + \mu_{Q_{i}}^{2} \right) \right]$$

$$c_{\rm B}(t) = \frac{-g'^2}{8\pi^2} \sum_{i=1}^{n_G} \left[-2\mu_{R_i} + \mu_{L_i} - \frac{2}{3}\mu_{dR_i} - \frac{8}{3}\mu_{uR_i} + \frac{1}{3}\mu_{Q_i} \right]$$

The Navier-Stokes equations

$$\frac{\partial \rho}{\partial t} + \frac{1}{R} \vec{\nabla} \cdot \left[(\rho + p) \vec{v} \right] + 3H (\rho + p) = 0$$

$$\left[\frac{\partial}{\partial t} + \frac{1}{R} \left(\vec{v} \cdot \vec{\nabla} \right) + H \right] \vec{v} + \frac{\vec{v}}{\rho + p} \frac{\partial p}{\partial t}
= -\frac{1}{R} \frac{\vec{\nabla} p}{\rho + p} + \frac{\vec{J} \times \vec{B}_Y}{\rho + p} + \frac{v}{R^2} \left[\nabla^2 \vec{v} + \frac{1}{3} \vec{\nabla} \left(\vec{\nabla} \cdot \vec{v} \right) \right]$$

Chern-Simons configuration

$$\vec{B}_Y = (1/R)\vec{\nabla} \times \vec{A}_Y$$

$$\vec{A}_Y = \gamma(t) (\cos kz, \sin kz, 0)$$

$$\vec{v} = (1/R)\vec{\nabla} \times \vec{S}$$

$$\vec{S} = r(t) (\cos kz, \sin kz, 0)$$

The evolution equations of hypermagnetic and velocity fields

$$\vec{E}_Y = -\frac{k'}{\sigma}\vec{B}_Y + \frac{c_V}{\sigma}k'\vec{v} - \frac{c_B}{\sigma}\vec{B}_Y$$

$$\frac{dB_Y(t)}{dt} = \left[-\frac{1}{t} - \frac{{k'}^2}{\sigma} - \frac{c_B k'}{\sigma} \right] B_Y(t) + \frac{c_V}{\sigma} {k'}^2 v(t)$$

$$\frac{\partial \vec{v}}{\partial t} = -v k'^2 \vec{v}$$

$$\nu \simeq 1/(5\alpha_Y^2 T)$$
 $k' = k/R = kT$ $\sigma = 100T$

Abelian anomaly equations

$$\nabla_{\mu} j_{e_R}^{\mu} = -\frac{1}{4} (Y_R^2) \frac{g'^2}{16\pi^2} Y_{\mu\nu} \tilde{Y}^{\mu\nu} = \frac{g'^2}{4\pi^2} \vec{E}_Y \cdot \vec{B}_Y,$$

$$\nabla_{\mu} j_{e_L}^{\mu} = \frac{1}{4} (Y_L^2) \frac{g'^2}{16\pi^2} Y_{\mu\nu} \tilde{Y}^{\mu\nu} = -\frac{g'^2}{16\pi^2} \vec{E}_Y \cdot \vec{B}_Y$$

FRW metric
$$ds^2 = dt^2 - R^2(t)\delta_{ij}dx^idx^j$$

Right-handed Electrons

Chirality flip processes:

$$e_L \bar{e}_R \leftrightarrow \phi^{(0)} \quad \nu_e^L \bar{e}_R \leftrightarrow \phi^{(+)}$$

are out of thermal equilibrium For $T > T_{RL} \simeq 10 \text{ TeV}$.

Evolution equations of the asymmetries

$$\frac{d\eta_{e_R}}{dt} = \frac{g'^2}{4\pi^2 s} \langle \vec{E}_Y \cdot \vec{B}_Y \rangle + \left(\frac{\Gamma_0}{t_{EW}}\right) \left(\frac{1-x}{\sqrt{x}}\right) \left(\eta_{e_L} - \eta_{e_R}\right)$$

$$\frac{d\eta_{v_e^L}}{dt} = \frac{d\eta_{e_L}}{dt} = -\frac{g'^2}{16\pi^2 s} \langle \vec{E}_Y \cdot \vec{B}_Y \rangle$$
$$+ \left(\frac{\Gamma_0}{2t_{EW}}\right) \left(\frac{1-x}{\sqrt{x}}\right) \left(\eta_{e_R} - \eta_{e_L}\right)$$

$$\frac{d\eta_{\rm B}}{dt} = \frac{3g'^2}{8\pi^2 s} \langle \vec{E}_Y \cdot \vec{B}_Y \rangle$$

$$\begin{split} \langle \vec{E}_Y \cdot \vec{B}_Y \rangle &= \frac{B_Y^2(t)}{100} \left[-\frac{k'}{T} - \frac{6sg'^2}{4\pi^2 T^3} \left(\eta_{e_R} - \frac{\eta_{e_L}}{2} + \frac{3}{8} \eta_{\rm B} \right) \right] \\ &+ \left[\frac{g'}{24} \beta[x(T)] + \frac{36s^2g'}{8\pi^2 T^6} \left(\eta_{e_R}^2 - \eta_{e_L}^2 \right) \right] \frac{k'T}{100} \langle \vec{v}(t) \cdot \vec{B}_Y(t) \rangle \end{split}$$

Parameters appearing in the equations

$$\eta_f = (n_f/s)$$
 with $f = e_R, e_L, v_e^L$ $s = 2\pi^2 g^* T^3/45$ $g^* = 106.75$ $x = (t/t_{\rm EW}) = (T_{\rm EW}/T)^2$

$$\Gamma_0 = 121, t_{\text{EW}} = (M_0/2T_{\text{EW}}^2)$$
 $M_0 = (M_{\text{Pl}}/1.66\sqrt{g^*})$

Gaussian fluctuations

$$\beta[x(T)] = \Delta T^2/T^2$$

$$\beta(x) = \frac{\beta_0}{b\sqrt{2\pi}} \exp\left[-\frac{(x - x_0)^2}{2b^2}\right]$$

$$\omega(x) = k'v(x) = \frac{k'v_0}{b\sqrt{2\pi}} \exp\left[-\frac{(x - x_0)^2}{2b^2}\right]$$

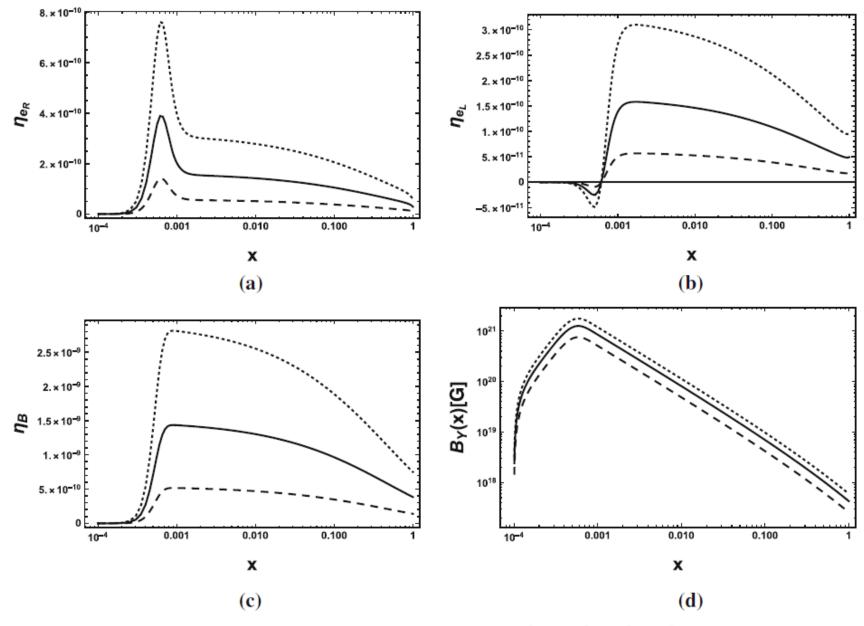


Fig. 1 Time plots of: a the right-handed electron asymmetry η_{e_R} , b the left-handed electron asymmetry η_{e_L} , c the baryon asymmetry η_B , and d the hypermagnetic field amplitude B_Y , for various values of the amplitude of temperature fluctuation of e_R . The initial conditions are:

 $k=10^{-7}, B_{Y}^{(0)}=0, \eta_{e_R}^{(0)}=\eta_{e_L}^{(0)}=\eta_{B}^{(0)}=0, v_0=10^{-5}, b=2\times 10^{-4},$ and $x_0=45\times 10^{-5}$. The dashed line is for $\beta_0=3\times 10^{-4}$, the solid line is for $\beta_0=5\times 10^{-4}$, and the dotted line is for $\beta_0=7\times 10^{-4}$

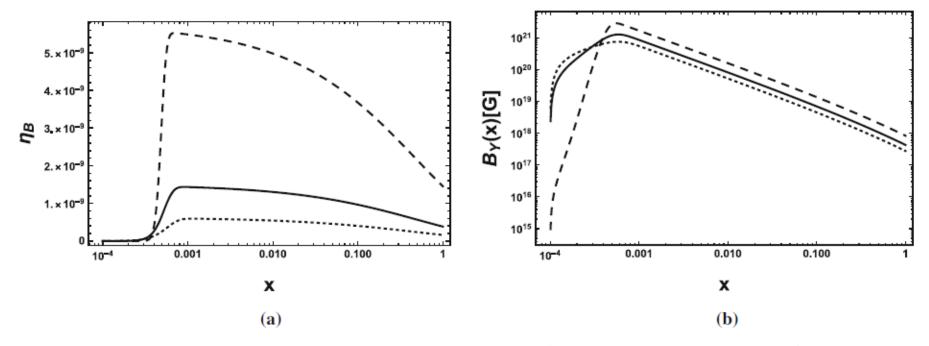


Fig. 2 Time plots of: a the baryon asymmetry η_B , and b the hypermagnetic field amplitude B_Y , for various values of the width of fluctuations. The initial conditions are: $k=10^{-7}$, $B_Y^{(0)}=0$, $\eta_{e_R}^{(0)}=\eta_{e_L}^{(0)}=\eta_B^{(0)}=0$,

 $v_0=10^{-5}$, $\beta_0=5\times 10^{-4}$, and $x_0=45\times 10^{-5}$. The dotted line is obtained for $b=3\times 10^{-4}$, the solid line for $b=2\times 10^{-4}$, the dashed line for $b=10^{-4}$

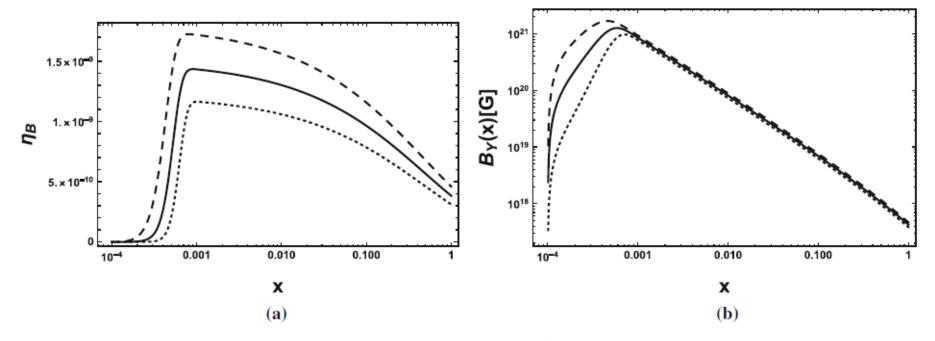


Fig. 3 Time plots of: a the baryon asymmetry η_B , and b the hypermagnetic field amplitude B_Y , for various values of the time of fluctuations. The initial conditions are: $k=10^{-7}$, $B_Y^{(0)}=0$, $\eta_{e_R}^{(0)}=\eta_{e_L}^{(0)}=\eta_B^{(0)}=0$,

 $v_0 = 10^{-5}$, $\beta_0 = 5 \times 10^{-4}$, $b = 2 \times 10^{-4}$. The dotted line is obtained for $x_0 = 55 \times 10^{-5}$, the solid line for $x_0 = 45 \times 10^{-5}$, and the dashed line for $x_0 = 35 \times 10^{-5}$

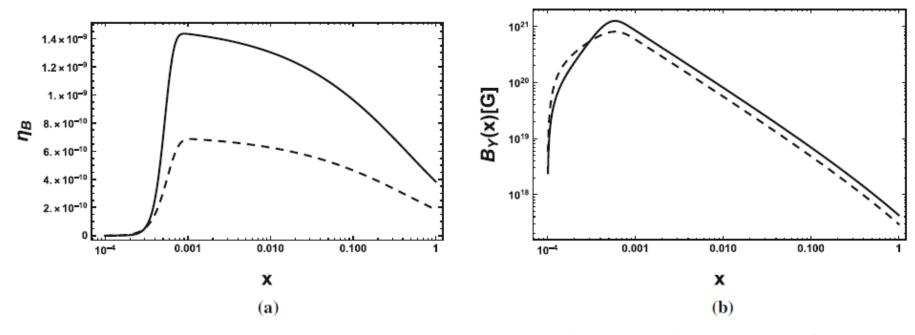


Fig. 4 Time plots of: a the baryon asymmetry η_B , and b the hypermagnetic field amplitude B_Y , for two different vorticity configurations. The initial conditions are: $k = 10^{-7}$, $B_Y^{(0)} = 0$, $\eta_{e_R}^{(0)} = \eta_{e_L}^{(0)} = \eta_B^{(0)} = 0$,

 $\beta_0=5\times 10^{-4}$, $b=2\times 10^{-4}$, and $x_0=45\times 10^{-5}$. The solid line is for vorticity fluctuation with $v_0=10^{-5}$, and the dashed line is for constant vorticity with $v_0=10^{-2}$

Two sets of Gaussian fluctuations

$$\beta(x) = \beta_{+}(x) + \beta_{-}(x)$$
 $\beta_{\pm}(x) = \frac{\pm \beta_{0}}{b\sqrt{2\pi}} \exp\left[-\frac{(x - x_{0,\pm})^{2}}{2b^{2}}\right]$

$$v(x) = v_{+}(x) + v_{-}(x)$$
 $v_{\pm}(x) = \frac{v_0}{b\sqrt{2\pi}} \exp\left[-\frac{(x - x_{0,\pm})^2}{2b^2}\right]$

$$\Delta x_0 = x_{0,+} - x_{0,-}$$

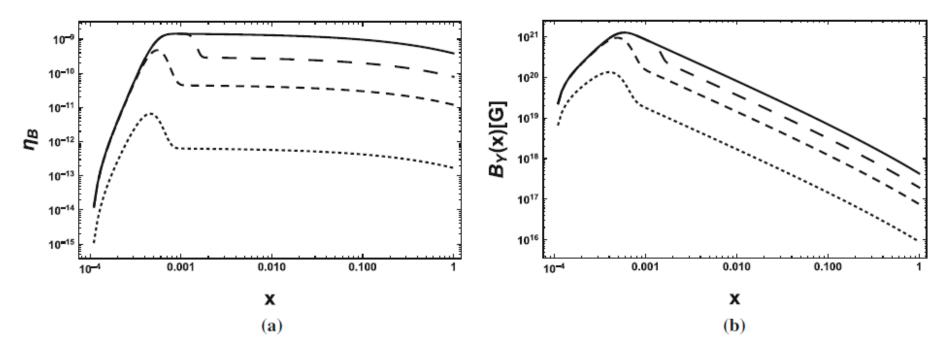


Fig. 5 Time plots of: a the baryon asymmetry η_B , b the hypermagnetic field amplitude B_Y for two sets of successive and opposing fluctuations. The initial conditions are: $k=10^{-7}$, $B_Y^{(0)}=0$, $\eta_{e_R}^{(0)}=\eta_{e_L}^{(0)}=\eta_B^{(0)}=0$, $v_{0,+}=v_{0,-}=10^{-5}$, $b=2\times10^{-4}$, $\beta_{0,+}=-\beta_{0,-}=5\times10^{-4}$, and

 $x_{0,+}=4.5\times 10^{-4}$. The large dashed line is for $x_{0,-}=1.45\times 10^{-3}=5b+x_{0,+}$, the medium dashed line is for $x_{0,-}=6.5\times 10^{-4}=b+x_{0,+}$, the dotted line is for $x_{0,-}=4.7\times 10^{-4}=0.1b+x_{0,+}$, and the solid line is obtained in the absence of the second set of fluctuations

Thank You

$$\frac{d\eta_{e_R}}{dx} = \left[-C_1 - C_2 \eta_T(x) \right] \left(\frac{B_Y(x)}{10^{20} G} \right)^2 x^{3/2}$$

+
$$\left[C_3\beta(x) + C_4\Delta\eta^2(x)\right]v(x)\left(\frac{B_Y(x)}{10^{20}G}\right)\sqrt{x} - \Gamma_0\frac{1-x}{\sqrt{x}}\left[\eta_{e_R}(x) - \eta_{e_L}(x)\right],$$

$$\frac{d\eta_{e_L}}{dx} = -\frac{1}{4} \left[-C_1 - C_2 \eta_T(x) \right] \left(\frac{B_Y(x)}{10^{20} G} \right)^2 x^{3/2}$$

$$-\frac{1}{4} \left[C_3 \beta(x) + C_4 \Delta \eta^2(x) \right] v(x) \left(\frac{B_Y(x)}{10^{20} G} \right) \sqrt{x} + \Gamma_0 \frac{1-x}{2\sqrt{x}} \left[\eta_{e_R}(x) - \eta_{e_L}(x) \right],$$

$$\frac{dB_Y}{dx} = \frac{1}{\sqrt{x}} \left[-C_5 - C_6 \eta_T(x) \right] B_Y(x) - \frac{1}{x} B_Y(x) + \left[C_7 \beta(x) + C_8 \Delta \eta^2(x) \right] \frac{v(x)}{x^{3/2}},$$

$$\Delta \eta^2(x) = \eta_{e_R}^2(x) - \eta_{e_L}^2(x),$$

$$\eta_T(x) = \eta_{e_R}(x) - \frac{\eta_{e_L}(x)}{2} + \frac{3}{8}\eta_{B(x)}$$

$$\beta(x) = \frac{\beta_0}{b\sqrt{2\pi}} \exp\left[-\frac{(x-x_0)^2}{2b^2}\right],$$

$$v(x) = \frac{v_0}{b\sqrt{2\pi}} \exp\left[-\frac{(x-x_0)^2}{2b^2}\right]$$

$$M = 2\pi^2 g^*/45$$

$$\alpha_Y = g'^2/4\pi \simeq 0.01$$

$$C_1 = 0.00096 \left(\frac{k}{10^{-7}}\right) \alpha_Y,$$

$$C_2 = 865688\alpha_Y^2,$$

$$C_3 = 0.71488 \left(\frac{k}{10^{-7}}\right) \alpha_Y^{3/2},$$

$$C_4 = 17152.7 \left(\frac{k}{10^{-7}}\right) \alpha_Y^{3/2},$$

$$C_5 = 0.356 \left(\frac{k}{10^{-7}}\right)^2,$$

$$C_6 = 3.18373 \times 10^8 \alpha_Y \left(\frac{k}{10^{-7}}\right),$$

$$C_7 = 262.9 \times 10^{20} \sqrt{\alpha_Y} \left(\frac{k}{10^{-7}}\right)^2$$

$$C_8 = 63 \times 10^{25} \sqrt{\alpha_Y} \left(\frac{k}{10^{-7}}\right)^2$$

Anomaly equations in the symmetric phase of the MSM

$$\begin{array}{lll} \partial_{\mu}j^{\mu}_{Q^{i}} = & +\frac{1}{2}(N_{w})\frac{g_{s}^{2}}{16\pi^{2}}G^{A}_{\mu\nu}\tilde{G}^{A\,\mu\nu} \ + \ \frac{1}{2}(N_{c})\frac{g^{2}}{16\pi^{2}}W^{a}_{\mu\nu}\tilde{W}^{a\,\mu\nu} \ + \ \frac{1}{4}(N_{c}N_{w}y_{Q}^{2})\frac{g^{'2}}{16\pi^{2}}Y_{\mu\nu}\tilde{Y}^{\mu\nu} \\ \partial_{\mu}j^{\mu}_{u_{R}} = & -\frac{1}{2}\frac{g_{s}^{2}}{16\pi^{2}}G^{A}_{\mu\nu}\tilde{G}^{A\,\mu\nu} \ & - \frac{1}{4}(N_{c}y_{u_{R}}^{2})\frac{g^{'2}}{16\pi^{2}}Y_{\mu\nu}\tilde{Y}^{\mu\nu} \\ \partial_{\mu}j^{\mu}_{d_{R}} = & -\frac{1}{2}\frac{g_{s}^{2}}{16\pi^{2}}G^{A}_{\mu\nu}\tilde{G}^{A\,\mu\nu} \ & - \frac{1}{4}(N_{c}y_{u_{R}}^{2})\frac{g^{'2}}{16\pi^{2}}Y_{\mu\nu}\tilde{Y}^{\mu\nu} \\ \partial_{\mu}j^{\mu}_{e_{R}} = & \frac{1}{2}\frac{g^{2}}{16\pi^{2}}W^{a}_{\mu\nu}\tilde{W}^{a\,\mu\nu} \ & + \frac{1}{4}(N_{w}y_{L}^{2})\frac{g^{'2}}{16\pi^{2}}Y_{\mu\nu}\tilde{Y}^{\mu\nu} \\ \partial_{\mu}j^{\mu}_{e_{R}^{i}} = & -\frac{1}{4}(y_{e_{R}}^{2})\frac{g^{'2}}{16\pi^{2}}Y_{\mu\nu}\tilde{Y}^{\mu\nu} \end{array}$$

$$y_Q = \frac{1}{3}$$
, $y_{u_R} = \frac{4}{3}$, $y_{d_R} = -\frac{2}{3}$, $y_L = -1$, $y_{e_R} = -2$
 $N_c = 3$ and $N_w = 2$

Name	Particle Reaction	Rate	Chemical Equilibrium
Up-Type Yukawa	$d_L^i + \Phi^+ \leftrightarrow u_R^i u_L^i + \Phi^0 \leftrightarrow u_R^i$	$\frac{h_{u^i}^2}{8\pi}T$	$\mu_{Q^i} + \mu_{\Phi} - \mu_{u_R^i} = 0$
Down-Type Yukawa	$u_L^i \leftrightarrow \Phi^+ + d_R^i d_L^i \leftrightarrow \Phi^0 + d_R^i$	$\frac{h_{di}^2}{8\pi}T$	$\mu_{Q^i} - \mu_{\Phi} - \mu_{d_R^i} = 0$
Electron-Type Yukawa	$ \nu_L^i \leftrightarrow \Phi^+ + e_R^i e_L^i \leftrightarrow \Phi^0 + e_R^i $	$\frac{h_{e^i}^2}{8\pi}T$	$\mu_{L^i} - \mu_{\Phi} - \mu_{e_R^i} = 0$
Strong Sphaleron	$\sum_{i} (u_L^i + d_L^i) \leftrightarrow \sum_{i} (u_R^i + d_R^i)$	$100\alpha_{\rm s}^5 T$	$\sum_{i} \left(2\mu_{Q^i} - \mu_{u_R^i} - \mu_{d_R^i} \right) = 0$
Weak Sphaleron	$\sum_{i} \left(u_L^i + d_L^i + d_L^i + \nu_L^i \right) \leftrightarrow 0$ $\sum_{i} \left(u_L^i + u_L^i + d_L^i + e_L^i \right) \leftrightarrow 0$	$25\alpha_{\mathrm{w}}^5T$	$\sum_{i} \left(3\mu_{Q^i} + \mu_{L^i} \right) = 0$