NEUTRAL EXOTICA AT FASER AND SND@LHC

Yasaman Farzan IPM, Tehran

Kling, "Forward Meutrino fluxes at the LHC," 2105.08270

Traces of new physics in neutrino scattering

- A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq and Z. Tabrizi, EFT at FASERv, 2105.12136.
- A. Ismail, R. Mammen Abraham and F. Kling, Neutral current neutrino interactions at FASERv, Phys. Rev. D 103 (2021) 056014 [2012.10500].
- F. Kling, Probing light gauge bosons in tau neutrino experiments, Phys. Rev. D 102 (2020) 015007 [2005.03594].
- P. Bakhti, Y. Farzan and S. Pascoli, Discovery potential of FASERv with contained vertex and through-going events, JHEP 04 (2021) 075 [2010.16312].
- Y. Jho, J. Kim, P. Ko and S.C. Park, Search for sterile neutrino with light gauge interactions: recasting collider, beam-dump, and neutrino telescope searches, 2008.12598.
- K. Jodłowski and S. Trojanowski, Neutrino beam-dump experiment with FASER at the LHC, JHEP 05 (2021) 191 [2011.04751].
- A. Ismail, S. Jana and R.M. Abraham, Neutrino Up-scattering via the Dipole Portal at Forward LHC Detectors, 2109.05032.

Large flux of muon neutrinos

Kling, "Forward Meutrino fluxes at the LHC," 2105.08270

Hints for new couplings of second generation leptons

Anomalous magnetic moment of muon

B. Abi et al., [Muon g-2], ``Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm," PRL **126** (2021) no.14, 141801

Our model

$$\Phi = egin{bmatrix} \Phi^+ \ \Phi^0 \end{bmatrix} \quad N$$

S. Ansarifard and Y. Farzan,

``Neutral Exotica at FASER ν and SND@LHC," [arXiv:2109.13962 [hep-ph]].

$$Y_{\alpha} \bar{N} \Phi^T c L_{\alpha} + Y_d \bar{d} \Phi^{\dagger} Q + Y_u \bar{u} \Phi^T c Q + \text{H.c.}$$

$$G_u \bar{N}_R \nu_\mu \bar{u}_L u_R + G_d \bar{N}_R \nu_\mu \bar{d}_R d_L + G_L \bar{N}_R \mu_L \bar{d}_R u_L + G_R \bar{N}_R \mu_L \bar{d}_L u_R + \text{H.c.}$$

$$G_u = \frac{Y_{\mu}Y_u^*}{m_{\Phi^0}^2}, \ G_d = -\frac{Y_{\mu}Y_d}{m_{\Phi^0}^2}, \ G_L = \frac{Y_{\mu}Y_d}{m_{\Phi^+}^2}, \ \text{and} \ G_R = \frac{Y_{\mu}Y_u^*}{m_{\Phi^+}^2}.$$

Imposing global U(1)

$$\Phi \to e^{i\alpha}\Phi$$
, $L_{\mu} \to e^{-i\alpha}L_{\mu}$, $\mu_R \to e^{-i\alpha}\mu_R$, $N \to N$, $u \to e^{i\alpha}u$, and $d \to e^{-i\alpha}d$,

- Coupling only first generation quarks
- Coupling to only second generation leptons
- Smallness of masses of u and d quarks
- No loop induced neutrino mass

Dirac or Majorana

oblique S, T, U parameters.

J. Haller et al., (Gfitter group),

"Update of the global electroweak fit and constraints on two-Higgs-doublet models,"

Eur. Phys. J. C 78 (2018) no.8, 675

Effective coupling

$$G_u \bar{N}_R \nu_\mu \bar{u}_L u_R + G_d \bar{N}_R \nu_\mu \bar{d}_R d_L + G_L \bar{N}_R \mu_L \bar{d}_R u_L + G_R \bar{N}_R \mu_L \bar{d}_L u_R + \text{H.c.}$$

 $G_u \sim G_d \sim G_L \sim G_R \sim 10^{-5} \text{ GeV}^{-2}$.

 $G_u = G_d = 10^{-5} \text{ GeV}^{-2}$.

S. Ansarifard and Y. Farzan, ``Neutral Exotica at FASER ν and SND@LHC," [arXiv:2109.13962 [hep-ph]].

 $m_N < 15 \text{ GeV}$

Number			$N+\stackrel{-}{N}$			
m_N GeV	0.1	1	3	8	10	15
SND@LHC	19	18	13	5	3	1
$\mathrm{FASER}\nu$	113	109	90	46	35	17
$\mathrm{FASER}\nu 2$	7685	7394	6045	3019	2229	1015

$$\Gamma(N \to \nu_{\mu} u \bar{u}) = \frac{|G_u|^2}{|G_d|^2} \Gamma(N \to \nu_{\mu} d\bar{d}) = \frac{|G_u|^2}{|G_L|^2 + |G_R|^2} \Gamma(N \to \mu u \bar{d}) = \frac{G_u^2 m_N^5}{1024\pi^3}$$

$$l = \Gamma_N^{-1} \gamma_N = 3 \ \mu \text{m} \frac{\left(10^{-5} \text{ GeV}\right)^2}{|G_u|^2 + |G_d|^2 + |G_L|^2 + |G_R|^2} \left(\frac{10 \text{ GeV}}{m_N}\right)^6 \left(\frac{E_N^{lab}}{200 \text{ GeV}}\right).$$

First vertex: NC vertex

Second vertex: NC or CC vertex

Accidental background

$$m_N = 15 \text{ GeV}$$
 $l = 0.4 \ \mu\text{m} \simeq \sigma_{pos}$ $m_N = 2 \text{ GeV}$ $l = 10 \text{ cm}$

$$\mathcal{N}_{NC}^2 \times p/2 \sim 0.02$$
 and $\mathcal{N}_{NC} \times \mathcal{N}_{\mu} \times p \sim 0.12$. $l^3 \propto (2 \text{ GeV}/m_N)^{18}$.

S. Ansarifard and Y. Farzan, ``Neutral Exotica at FASER ν and SND@LHC," [arXiv:2109.13962 [hep-ph]].

CMS and ATLAS

 Φ can be pair produced via electroweak interaction

 $\sim 10 \text{ fb}$

$$\Phi^0 \to N\bar{\nu}_{\mu} \text{ and } \Phi^+ \to N\mu^+$$

$$\Gamma(N \to \nu_{\mu} u \bar{u}) = \frac{|G_u|^2}{|G_d|^2} \Gamma(N \to \nu_{\mu} d\bar{d}) = \frac{|G_u|^2}{|G_L|^2 + |G_R|^2} \Gamma(N \to \mu u \bar{d}) = \frac{G_u^2 m_N^5}{1024\pi^3}$$

Forward experiments Customized search in ATLAS and CMS data

Majorana vs Dirac

$$\Phi^+ \to \mu^+ N \to \mu^+ \mu^+ d\bar{u}$$
 Same sign lepton

Contribution to Muon Magnetic dipole moment

$$Y_{\mu} \bar{N} \Phi^T c L_{\mu}$$

$$\Delta a_{\mu} = \delta \left(\frac{g-2}{2} \right) = \frac{Y_{\mu}^2}{16\pi^2} \frac{m_{\mu}^2}{m_{\Phi^+}^2} K(m_N^2/m_{\Phi^+}^2),$$

$$K(t) = \frac{2t^2 + 5t - 1}{12(t - 1)^3} - \frac{t^2 \log t}{2(t - 1)^4}$$
 For $m_N^2 / m_{\Phi^+}^2 \to 0, K \to 1/12$

L. Lavoura, General formulae for $f(1) \rightarrow f(2)$ gamma, Eur. Phys. J. C 29 (2003) 191

Contribution to Muon Magnetic dipole moment

Contribution from minimal model:

$$\Delta a_{\mu} = \delta \left(\frac{g-2}{2} \right) = 5 \times 10^{-10} \left(\frac{Y_{\mu}}{3} \right)^2 \left(\frac{300 \text{ GeV}}{m_{\Phi^+}^2} \right)^2.$$

Four or Five times smaller

$$a_{\mu}(Exp) - a_{\mu}(SM) = (25.1 \pm 5.9) \times 10^{-10}$$

B. Abi et al., [Muon g-2], ``Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm," PRL 126 (2021) no.14, 141801

Contribution to Muon Magnetic dipole moment

Contribution from minimal model:

$$\Delta a_{\mu} = \delta \left(\frac{g-2}{2} \right) = 5 \times 10^{-10} \left(\frac{Y_{\mu}}{3} \right)^2 \left(\frac{300 \text{ GeV}}{m_{\Phi^+}^2} \right)^2.$$

B. Abi et al., [Muon g-2], ``Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm," PRL 126 (2021) no.14, 141801

Four copies of scalar doublet

Effective coupling 💥 4 🚛

Four copies of N

Interesting phenomenology

Chain leptonic decays of N

Model with multiple sterile neutrinos

$$Y_{\alpha i} \bar{N}_i \Phi^T c L_{\alpha} + \text{H.c.}$$

$$G_{ij}^{\mu}(\bar{N}_{i}\mu)(\bar{\mu}N_{j}) + G_{ij}^{\nu}(\bar{N}_{i}\nu_{\mu})(\bar{\nu}_{\mu}N_{j})$$

$$G_{ij}^{\mu} = \frac{Y_{\mu i} Y_{\mu j}^*}{m_{\Phi^+}^2}$$
 and $G_{ij}^{\nu} = \frac{Y_{\mu i} Y_{\mu j}^*}{m_{\Phi^0}^2} + \text{H.c.}$

$$Y_{\mu i} \sim Y_{\mu j} \sim 3 \text{ and } m_{\Phi^+} \sim m_{\Phi^0} \sim 300 \text{ GeV}, \implies G^{\nu}_{ij} \sim G^{\mu}_{ij} \sim 10^{-4} \text{ GeV}^{-2}.$$

$$Y_{\mu i} \gg Y_{\mu}, Y_{d}$$
:

$$Y_{\mu i} \gg Y_u, Y_d$$
: $N_i \to N_j \mu \bar{\mu} \text{ and } N_i \to N_j \nu_{\mu} \bar{\nu}_{\mu}$.

The lightest N_i decays into ν +two jets or μ +two jets

Signals at forward experiments

Missing transverse momentum

Summary

Forward experiments can test $G_u \bar{N}_R \nu_\mu \bar{u}_L u_R + G_d \bar{N}_R \nu_\mu \bar{d}_R d_L$ $m_N < 15 \ {\rm GeV}$

■ Signature of minimal model:

Alert for CMS and ATLAS

 \blacksquare CMS and ATLAS \rightarrow nature of N (Majorana vs Dirac)

Summary

- Contribution to muon magnetic moment, ¼ of deviation
- Extending model to include more N
- Chain decays of N at forward experiments with multiple muon emission

