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Abstract

We make the case that over the coming decade, computational
technology and computer assisted reasoning will become far more
widely used in the mathematical sciences.
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Extended Abstract

We make the case that over the coming decade, computer assisted
reasoning will become far more widely used in the mathematical
sciences. This includes interactive and automatic theorem verification,
symbolic algebra, and emerging technologies such as formal
knowledge repositories, semantic search and intelligent textbooks.
After a short review of the state of the art, we survey directions where
we expect progress, such as mathematical search and formal
abstracts, developments in computational mathematics, integration of
computation into textbooks, and organizing and verifying large
calculations and proofs. For each we try to identify the barriers and
potential solutions.
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Introduction

Computers and the internet have had a large and growing impact on
many human activities. Many believe that machine learning and AI will
dramatically expand this impact.

In this talk we focus on the mathematical sciences, broadly defined to
include not just pure and applied mathematics and statistics, but also
much of computer science, and the theoretical and computational
branches of physics, chemistry and biology.

Our goal will be to identify opportunities for significant advances in how
we discover, communicate and teach knowledge in these fields, which
are feasible over the coming decade.

We will do this by identifying lines of research which address clear
needs, which are being pursued now, which have interesting results
and are making progress, and then extrapolating this progress.
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Introduction

The first electronic computers were built at the end of World War II,
and they were first used for numerical calculations in scientific and
military applications. Soon the pioneers of computer science saw their
far broader potential:

Information storage and retrieval (Vannevar Bush)
Control systems (many people, let’s say Norbert Wiener)
Artificial intelligence (Newell and Simon, McCarthy, Minsky)
Natural computing (Rosenblatt, Ulam and von Neumann, Holland)

In mathematical research, the growing availability of computation led to
a steadily growing interest in numerical methods and simulation. This
has had a huge impact on the mathematical sciences.

AI researchers proposed visionary ideas such as automated theorem
proving. Early attempts were based on tree search, which in general
requires exponential time and by itself can only solve small problems.
But as part of their research, they developed broadly useful
technologies for symbol manipulation, leading for example to symbolic
algebra systems.
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Introduction

The next technological leap was the Internet. This dramatically sped
up the dissemination of results. In my own field of theoretical physics,
we went from paper preprints in the 80’s to the arXiv in the early 90’s.

The “second superstring revolution” was begun in 1993 by Ashoke
Sen, working almost alone in India. Before the internet, important
discoveries were quickly taken over by groups working in a few
dominant centers. But with the internet, Sen and the many other
researchers spread around the world could stay competitive. Unlike
the “first superstring revolution” in the 80’s, this time there was no
single dominant center of research.

Arguably the greatest success story of this type is Wikipedia. In the
past, large collaborative knowledge projects such as encyclopedias
required a great deal of organization, and centralized control of the
editing process. While Wikipedia still has editors and a hierarchical
organization, it requires far fewer editors than anyone predicted.
Wikipedia is a valuable resource for mathematical scientists, but by no
means a panacea.
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 5 / 57



Introduction

The next technological leap was the Internet. This dramatically sped
up the dissemination of results. In my own field of theoretical physics,
we went from paper preprints in the 80’s to the arXiv in the early 90’s.

The “second superstring revolution” was begun in 1993 by Ashoke
Sen, working almost alone in India. Before the internet, important
discoveries were quickly taken over by groups working in a few
dominant centers. But with the internet, Sen and the many other
researchers spread around the world could stay competitive. Unlike
the “first superstring revolution” in the 80’s, this time there was no
single dominant center of research.

Arguably the greatest success story of this type is Wikipedia. In the
past, large collaborative knowledge projects such as encyclopedias
required a great deal of organization, and centralized control of the
editing process. While Wikipedia still has editors and a hierarchical
organization, it requires far fewer editors than anyone predicted.
Wikipedia is a valuable resource for mathematical scientists, but by no
means a panacea.
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 5 / 57



Introduction

The next technological leap was the Internet. This dramatically sped
up the dissemination of results. In my own field of theoretical physics,
we went from paper preprints in the 80’s to the arXiv in the early 90’s.

The “second superstring revolution” was begun in 1993 by Ashoke
Sen, working almost alone in India. Before the internet, important
discoveries were quickly taken over by groups working in a few
dominant centers. But with the internet, Sen and the many other
researchers spread around the world could stay competitive. Unlike
the “first superstring revolution” in the 80’s, this time there was no
single dominant center of research.

Arguably the greatest success story of this type is Wikipedia. In the
past, large collaborative knowledge projects such as encyclopedias
required a great deal of organization, and centralized control of the
editing process. While Wikipedia still has editors and a hierarchical
organization, it requires far fewer editors than anyone predicted.
Wikipedia is a valuable resource for mathematical scientists, but by no
means a panacea.
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 5 / 57



Introduction

Many people would agree that we are in the midst of a third
technological leap, powered by machine learning. ML has led to
dramatic improvements in the ability of computers to recognize and
classify patterns, to translate between languages, to play games of
strategy, to extract information from documents, and to carry out tasks
without requiring explicit programming. Its scope is still expanding.

ML is already a core technology for firms like Google, Apple, Facebook
etc. and they have established groups whose total research staff
numbers in the thousands. ML is gradually being adopted by
businesses of all sizes, academic research groups, government etc.

How can ML be used by mathematical scientists? Of course ML is
itself a mathematical concept and is studied by statisticians, applied
mathematicians and other mathematical scientists. But it can also be
used to augment the human capability to do more general research, by
helping to recognize patterns, by finding and organizing relevant data,
documents and code, by helping to write and verify code and
mathematical proofs, in education, and in other ways.
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Computer assisted mathematics Computer media for the mathematical sciences

Established media and tools

Let’s briefly survey the existing software and tools, starting with well
established tools for scientific communication and publication,
continuing with computational tools and resources, and finishing with
more experimental projects. Established media and tools:

Text processing and formatting: LATEX, Markdown, ...
Hypertext: HTML and web standards
Publication/archiving: arXiv, MathSciNet, zbMATH, EuDML
Web authoring tools: Wordpress, MediaWiki, ...
Notational standards: MathML, OpenMath, ...
Notebooks: Mathematica, Jupyter
Text, reference and metadata-based search: Google Scholar,
Semantic Scholar
Online reference (human oriented): Wikipedia, Mathworld
Q&A social media: Stack Overflow, Zulip, ...
Referencing tools and standards: Bibtex, ORCID, ...
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Computer assisted mathematics Computational tools

Computational tools

Computer mathematics / symbolic algebra platforms
Mathematica, Wolfram Alpha
SageMath, CoCalc
Specialized systems: GAP, Pari, Singular, Macaulay2, Magma, ...
Integrated with a general purpose language: SymPy
And more: see Wikipedia’s List of computer algebra systems.

Software development tools
Interactive programming languages: R / S, MatLab, Python, Julia, ...
Repositories with version control: Git, Github
Software libraries: PyPI, MathWorks FileExchange, ...
Interactive development environments

Mathematical databases
Online Encyclopedia of Integer Sequences
Atlas of Finite Groups, GAP libraries
Kreuzer-Skarke database of Calabi-Yau manifolds
See https://mathdb.mathhub.info/ for many more

We will discuss some of these entries in more detail below.
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Computer assisted mathematics Computational tools

Interactive theorem verification

Proof assistants:
Isabelle/HOL, HOL Light
Coq
Lean
Mizar, Metamath, ...

All of these have libraries of proven theorems = more
mathematical databases.
Automated provers, mostly for first order logic: E, Vampire, ...
SAT and SMT solvers: Z3, Alt-Ergo, ...
Flagship verified proofs:

The four-color theorem
The Feit-Thompson theorem
Hales’s proof of the Kepler conjecture

We will go into more depth about this topic later.
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Computer assisted mathematics Computational tools

More experimental or avant-garde projects

Collaborative textbooks: the Stacks Project
Search for formulas: SearchOnMath, MathWebSearch
Web-based math collaborations: Polymath
Verified mathematics repositories: the QED Manifesto, Mizar,
Formal Abstracts
AI and theorem proving: TacticToe, GamePad, HOList, GPT-F
Math/CS collaborations: Lean Forward, ...
Math dataset infrastructure: MDDL
Computer grading and intelligent tutoring: STACK
Other mathematical knowledge management projects: GDML,
OMDoc, IMKT
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How are these tools used now? Mathematical search

Mathematical search

It’s not clear that any of these are mature technologies, in the sense
that we can only expect incremental improvements. But some of them
are widely used. For example, almost everyone here uses search
engines and computer typesetting (mostly LATEX), most of us read and
write papers on arXiv and look at Wikipedia articles, some of us write
blogs or Wikipedia articles, and many of us use Mathematica or
SageMath, and write programs in Python.

Let’s give some examples to illustrate some experimental tools, the
problems they solve, and their limitations. We will start with search.
Many mathematicians, for example Tim Gowers, have emphasized the
potential value of a mathematical search engine. What is this?

The idea is, we describe a mathematical concept, and get back a list of
documents containing claims, explanations, proofs, algorithms,
computer code, etc., all relevant to our query.
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How are these tools used now? Mathematical search

The easy case is when we are looking up a theorem or definition with
its own name. Thus, if we want to know more about the four square
theorem, or Sobolev spaces, we can just type the name into a search
engine, and get many relevant responses:
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How are these tools used now? Mathematical search

While this is very helpful, it is hardly the answer to all of our questions.

Suppose we don’t know the name?

Suppose we invent a new concept or prove a new theorem? Are we
really sure it is new? Maybe somebody already discovered or proved
it. So what do we search for?

More than most human pursuits, in mathematics we can state our
claims in simple and “universal” ways. Suppose we develop a search
engine to look for formulas (including logical expressions) in
documents. This would be a start, but of course a concept could be
described by many different formulas, require several formulas for its
definition, etc.. One might wonder how well a textual search could
work.

Let’s try it out. The web site https://www.searchonmath.com
offers formula search. Could we find “prime numbers” just from the
definition?
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How are these tools used now? Mathematical search

I know, this is the set {1}, but maybe this is close enough.
Type it in into https://www.searchonmath.com . The result:
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How are these tools used now? Mathematical search

Pretty good! I didn’t think this would work. Let’s try a harder one.
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How are these tools used now? Mathematical search

Not as good, but at least we got names we could try in another search.
And actually our previous good result was a bit of a cheat as it used
the fact that the symbol p is often used to denote a prime. Consider
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How are these tools used now? Mathematical search

A better search engine would have to “anonymize” the variables and
try out many substitutions. See Kohlhase et al’s work on
MathWebSearch for some of the issues. But there are many
limitations of any formula-based search:

Many concepts cannot be described by a simple formula in terms
of standard concepts. One must build them up using two or three
formulas, or else use a complicated non-canonical formula.
Even when one has a simple definition, to refer to the standard
concepts, one has to know and use the right formulations for
them. Even when concepts are standard, their formulations are
often not.

An example:
normal(H,G) := H ∈ subgroups(G) ∧ ∀g ∈ G,gHg−1 ∼= H
∀H ∈ subgroups(G) : normal(H,G)⇒ H ∼= trivial ∨ H ∼= G

Do we have to remember “normal”, or H /G, or ?
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How are these tools used now? Mathematical search

Perhaps a good mathematical search engine will need to be based on
a systematic library of mathematical definitions. Later in the talk we will
discuss a proposal to make one, the Formal Abstracts project.

But let’s suppose this works and we find relevant results – formulas,
claims, explanations, proofs, code. What do we do next?

1 At one extreme, we study the results, understand them, and
rederive everything we actually use.

2 At the other, we trust the results and copy them into our own work.
Although (1) might seem virtuous and (2) lazy, of course this is
simplistic. We all use many well established and well understood
results every day, and it can take a long time to rederive or even check
all the details. Life is too short to always do this.
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How are these tools used now? Mathematical search

But, even if we want to use well established and well understood
search results (claims, proofs, code), how do we know they are
correct? This is at least as serious a difficulty with building on previous
work as finding it (perhaps more).

Can we systematize this? Some approaches:
Curation – only use search results published in journals or in
curated software libraries.
Validation – only use results which we can check. For example, a
subroutine which implements a function f (x), can be spot-checked
against known pairs (x , f (x)).
Certification – only use results which come with a certificate of
correctness. For example, a theorem along with its proof.

Later we will discuss the state of the art in automated theorem
verification, with this motivation in mind. But first let’s talk about other
areas where we can expect progress.
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How are these tools used now? Computational mathematics

Computational mathematics

Many of the great mathematicians – Euler, Gauss and Ramanujan
come to mind – were renowned for the calculational abilities, which
were the basis for many mathematical discoveries.
This tradition continues and has been enhanced by the use of
computers. Leaving aside computer-aided proofs of earlier
conjectures, a few discoveries which were made this way include

Many properties of chaos in dynamical systems.
Most of the original constructions of the sporadic finite groups.
The Birch Swinnerton-Dyer conjecture, based on calculations
done on the EDSAC-2 computer at Cambridge.

Numerical experiment is now a central part of number theory, see for
example the web site of the Simons Collaboration on Arithmetic
Geometry, Number Theory, and Computation.
Still, continuing any specific program eventually runs into exponentially
large computing problems, because of the curse of dimensionality, the
existence of NP hard problems, etc. .
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How are these tools used now? Computational mathematics

So what are new ideas and tools which will lead to progress by 2030 ?
Faster computers, more storage, better infrastructure
Satisfiability modulo theories, SAT+CAS, ...
Neural networks – the subject of many talks at this workshop
Advances in statistics

The first of these, while not involving deep concepts, can still make a
big difference to research. As an example from physics, there was a
large effort starting in the 80’s to do numerical simulations of lattice
gauge theory, to compute masses of hadrons ab initio. This problem
was essentially solved in the 2000’s, mostly thanks to cheap
supercomputers (clusters with GPUs).

If we were within a factor of 1000 (time, space, ...) of solving a problem
in 2019, it will probably be solved using the same methods by 2030.
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How are these tools used now? Computational mathematics

SAT, SMT and SAT+CAS

SAT solvers: solve problems in propositional logic, given as a list of
clauses.
Math example: the Boolean Pythagorean triple problem, split {1...N}
into two subsets such that neither subset contains a triple a2 + b2 = c2.
Possible for N = 7824 and not for N = 7825, as shown by Heule,
Kullmann, and Marek in 2016 (producing “the world’s longest proof”).

In this problem the Boolean variables are the assignments of each
number to a subset, and the logical clauses are easy to derive. Many
problems involve more algebra, or reasoning in other domains. An
SMT (Satisfiability Modulo Theories) solver combines some other
decision algorithm with a SAT solver. Often the SAT solver can reach
its conclusions without evaluating many of the constraints, so this will
be much faster. The “SAT+CAS” variant combines a SAT solver with a
general computer algebra system, which checks proposed solutions
and can return “conflict clauses” to the SAT solver.
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How are these tools used now? Computational mathematics

Problems suitable for this approach tend to be those in which the
search space has a natural Boolean encoding. There are many
examples in https://arxiv.org/abs/1907.04408 (the
MathCheck project):

The Williamson conjecture: find four symmetric n × n matrices
with ±1 entries such that

A2 + B2 + C2 + D2 = 4n · id. (1)

These can be arranged into a 4n × 4n Hadamard matrix satisfying
HH t = 4n · id. Strangely enough, these exist for all n < 35, and all
even n ≤ 70, but not for n = 35.
Golay pairs: polynomials f ,g with coefficients from {1, i ,−1,−i}
such that |f (z)|2 + |g(z)|2 is constant on the unit circle.
3× 3 matrix multiplication using fewer than 27 scalar
multiplications. One can find many ways using 23 and so far, none
using 22.

Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 23 / 57



How are these tools used now? Computational mathematics

Neural networks

Neural networks and deep learning are useful not only for
neuroscience and AI, but can be applied in many numerical
computations.
Function fitting (interpolation, extrapolation) is ubiquitous. A few
examples:

Optimization: model the objective function.
PDE’s: interpolate solutions at subgrid scales.
quantum chemistry: predict ground state energies of molecules.

Another great advantage of NN’s is that one can save a lot of time
writing programs, instead training the NN on a large dataset – this is
particularly useful for exploratory work.

The theory of what function classes can be approximated or what
tasks learned is in its infancy – raising very interesting mathematical
questions.
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How are these tools used now? Computational mathematics

Advances in statistics

Statistics is hardly new, but one could argue that with less need for
computational efficiency, one is more free to use general approaches
based on simple concepts:

Generative models: give entire probability distribution of data.
Bayesian statistics: turn around model⇒ data to infer P(model).
Information theory: KL divergence, variational methods
Distances between observations or measures: Wasserstein
distance and optimal transport, ...

Given two measures µ and ν on a metric space M, the p’th
Wasserstein distance between them is

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
M×M

d(x , y)pdγ(x , y)
)1/p

(2)

where
∫

M1
dγ = µ, resp. M2 and ν.
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How are these tools used now? Computational mathematics

An interesting trend in physics and other hard sciences is to replace
hand-crafted concepts and tools for data analysis, with more general
statistical tools. An example from particle physics is Thaler et al,
http://arxiv.org/abs/1902.02346, “The Metric Space of
Collider Events.” They use Wasserstein W1 as a distance between
collider events, considered as energy distributions µ, ν.
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The most important use: education Intelligent books

What might a math textbook look like in 2030?

Let’s have an example in mind: an introductory textbook on ordinary
differential equations for math majors. The primary goal is clear: to
help students who understand the prerequisites to master a specified
body of knowledge, usually at the breadth and depth that can be
covered in a semester or year-long university course. It has chapters
with a linear or tree-like dependency structure, clear explanations,
consistent notation, and numerous exercises of various levels of
difficulty (and with the difficulty clearly marked). Ideally it has an index
pointing to the definition and each significant reference for every
concept and notation, and references for further reading.

We could go into the design choices in more detail, but the main point
is, book technology requires them to be fixed. In doing this, one
generally assumes a particular use (teaching a university course).
Computer technology is far more flexible. On the other hand, some
design choices contribute to effective learning. How to proceed?
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The most important use: education Intelligent books

Let’s develop a wish list, ranging from more modest ideas to more
ambitious ones, and then ask how feasible each wish might be.

First, some existing capabilities could be added and/or improved:
Adaptations for modern media. All references within and without a
document should be hyperlinks, some should be pop-up links. It
should be easy for a student to highlight passages and record his
or her own notes and connections.
Automated grading of exercises, ideally accepting sketches of
work and giving partial credit (see Chris Sangwin’s talk at
www.icms.org.uk/downloads/bigproof/Sangwin.pdf).
Social learning – exchange of hints and explanations through
Q&A sites, finding online collaborators to discuss problems.
More adaptations. Computational notebooks allow
expanding/contracting passages. A text could have a flow chart,
not just of chapters but of concepts. Ideally the flow chart would
be generated (semi-)automatically. The reader could expand only
the nodes of interest.
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The most important use: education Intelligent books

Going beyond this, we would like our students to learn concepts, and
also techniques and tools for solving their problems. Both take time
and often a course in computational methods comes after an
introductory course.
Here is a textbook which takes a different approach:
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The most important use: education Intelligent books

This is a textbook on advanced classical mechanics, including
Lagrangian and Hamiltonian mechanics, canonical transformations
and perturbation theory, and chaos theory. The authors Gerald Jay
Sussman and Jack Wisdom are renowned experts in computer
science/AI and planetary science/celestial mechanics respectively.

While its table of contents is similar to others on the topic, the book
integrates computation from the start, providing a platform based on
Scheme which facilitates not only numerical experiments, but also
symbolic computations. Basic principles such as the meaning of a
Lagrangian functional and the derivation of equations of motion are not
just explained, but presented with computational examples. For
example, in chapter 1, all of the steps starting from the initial
Lagrangian or equations of motion for a driven pendulum, to the
numerical integrator and results, are given with explicit (and short!)
computer code.
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Interactive theorem verification

Interactive theorem verification

In the 50’s and 60’s, the pioneers of AI developed automatic theorem
provers, which generate logical deductions and search for proofs of
given logical statements. Concurrently, the subfield of formal methods
was developed, in which computer programs were given precise
semantics allowing them to be rigorously verified.

This is of great practical value, especially for programs (an airplane
autopilot, a CPU floating point unit) where mistakes can be extremely
expensive. Thus it has been pursued intensively for decades, the
formal methods community is fairly large and well-funded, and most of
the systems we cited (Isabelle and Coq, though not Mizar) have
software verification as the primary application.
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Interactive theorem verification

As a prototypical example of software verification, let us briefly discuss
sorting a list into alphabetical order. In an algorithms course one
learns that a list of N elements can be sorted in worst case time
N logN, but the algorithms (quicksort, heapsort, ...) are a bit tricky. On
the other hand, logically defining the problem of sorting is not difficult.
In Coq we can say

In https://softwarefoundations.cis.upenn.edu/
vfa-current/Sort.html one can see formally verified proofs that
runnable sorting programs satisfy this specification.
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Interactive theorem verification

The Fundamental Theorem of Algebra

Let’s look a bit at a mathematical example, the fundamental theorem of
algebra. As we all know, this states that the field C of complex
numbers is algebraically closed, in other words every nonconstant
polynomial f (z) has a root.

This claim can be easily formalized: in the Lean theorem proving
language, we can say

lemma exists_root {f : polynomialC} (hf : 0 < degree f ) :
∃z : C, f .eval z = 0 := (3)

followed by the proof.

Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 33 / 57



Interactive theorem verification

Here is an informal proof. We start by assuming that f has no zero, to
get a contradiction. (A constructive proof exists but is longer.)

1 We first show that |f (z)| attains its minimum at some point z0. A
polynomial goes to infinity at infinity, so the infimum of f is
contained in a closed bounded region R. Since |f | is continuous,
the image of R is closed and bounded, so it contains its infimum.

2 Expand around the location z0 of the minimum by writing

f (z) = f (z0) + (z − z0)
ng(z)

for some polynomial g(z) such that g(z0) 6= 0.
3 Now, consider a small circle z = z0 + δeiθ. If we neglect the

variation of g(z) and look at F (z) = f (z0) + (z − z0)
ng(z0), it is

easy to show that z0 cannot be a minimum of |F (z)|, since
(z − z0)

n takes every possible phase.
4 Intuitively, we then want to choose δ small enough such that we

can neglect the variation of g(z), so z0 cannot be a minimum of
|f (z)|, a contradiction. After a bit of algebra, it turns out that
|g(z)− g(z0)| < |g(z0)| ∀|z − z0| ≤ δ suffices.
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Interactive theorem verification

The Lean version of this proof takes about 100 lines: here is part 1.

The statement being proved is on line 13 - it is clear and intuitive.
The language is “computerese” - but this is a question of taste and
one can display the same content in more math-friendly notations.
Unlike the informal proof, we had to give many propositions their
own names and calling conventions, which also hurts readability.
Commands like rw and simpa are “tactics,” explicit instructions to
the proof verifier. These are procedural and tricky to get right.

Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 35 / 57



Interactive theorem verification

Today’s ITV systems incorporate many advances in logic, such as
dependent type theory (in Coq and Lean), and many advances in
computer science. But despite all this work, theorem verification is
more akin to programming than to any of the traditional skills of a
mathematical scientist. And the many differences with informal proofs
which we just cited, while each fairly simple, add up. At present ITV is
hard to learn and use.

Still, many people believe that formalization and verification is a central
part of the relation between computers and mathematics. This even
includes theoretical physicists and others for whom rigorous proof is
not a primary goal. It is hard to get a computer to understand anything,
and here is a way for it to “understand truth.” So how to use this?

Definitions are easier to write than proofs: focus on these?
Perhaps ITVs need more reasoning methods than deductive
logic? Say counterexamples, heuristics, etc.. Omitted in this talk.
Will machine learning and AI help?
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Interactive theorem verification

Formal Abstracts

Tom Hales at U Pittsburgh has begun a project to create an online
repository of formal abstracts, meaning statements of the main results
of a mathematical paper, expressed in formal terms. Proofs would not
be required, but it should be possible in principle to prove every
abstract true or false. This project has many parts – here are a few
(based on discussions with Tom):

A solid ITV with dependent types – Lean.
A library of standard concepts which can be used by abstracts,
probably covering all of advanced undergraduate/early graduate
level mathematics. A very rough estimate of the size is about
50,000 definitions filling 10,000 pages.
Abstracts can be written in a controlled natural language which
looks like standard mathematical text.
Interactive tools to help search for, read and write abstracts.

While ambitious, such a system could be fully operational with its
library in less than five years.
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Interactive theorem verification

Formalization of research level mathematics

Here are some recent and current projects in formalization of research
mathematics, including central results with substantial proofs, and
frontier topics. See recent articles and blogs of Kevin Buzzard for the
latest developments.

Schemes in algebraic geometry (Buzzard et al arXiv:2101.02602).
Peter Scholze’s “Liquid Tensor Experiment” – formalize the proof
of a key theorem about condensed abelian groups in Lectures on
Analytic Geometry by Clausen and Scholze. Completed on May
28 by Johan Commelin and the Lean community.
Perfectoid spaces (Buzzard, Commelin, Massot).
Independence of the continuum hypothesis (Han and van Doorn,
arXiv:2102.02901).
In progress (Massot et al): the h-principle for open and ample first
order differential relations, and its application to sphere eversion
(a homotopy of embeddings S2 → R3 which exchanges inside and
outside).
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Interactive theorem verification

As for the third question, clearly AI has made transformative progress
over the last decade. Let’s come back to this after discussing some
more applications.
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Interactive theorem verification Big proof

Big proof

CAR has attracted attention from mathematicians for its potential to
solve some difficult challenges. One of the recognized challenges is
“big proof,” the ability to work with, verify and communicate
mathematical proofs which are too large for any individual to fully
comprehend. The classic examples are proofs which involve
case-by-case analysis of a vast number of cases, such as the proofs of
the four-color theorem and of the Kepler conjecture.

In the proof of the four-color theorem (Appel and Haken 1976,
Robertson et al 1995), one shows that every planar graph must contain
as a subgraph, one out of a list of “reducible” configurations from which
one can remove an edge while maintaining four-colorability. Thus, by
induction, all graphs are four-colorable. And it turns out that such a list
can consist of subgraphs with non-negative discrete curvature (arity)
and a bound on the perimeter length, so they can be enumerated.
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Interactive theorem verification Big proof

This is a fine approach to proving the four-color theorem, except that
the smallest known list has 633 subgraphs, and the computations
required to prove its sufficiency are lengthy, even for a computer.
(This list is not unique and perhaps the set of possible lists could be
better understood.)

In 1611, Kepler conjectured that the most efficient (densest) way to
pack spheres in three dimensions is the hexagonal close packing (and
an infinite set of variations on it). This was proven in 1998 by Thomas
Hales, with computer assistance. The proof involves solving over
100,000 linear programming problems.

Both of these proofs have been formally verified, meaning not just that
the computations have been checked, but that the arguments by which
these results imply the mathematical theorem have been formalized
and verified. For the four-color theorem this was done in 2005 by
Gonthier and collaborators (see Gonthier 2008 in the Notices of the
AMS). For Kepler this was finished in 2014 by Hales and collaborators
(the Flyspeck project).
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 41 / 57



Interactive theorem verification Big proof

This is a fine approach to proving the four-color theorem, except that
the smallest known list has 633 subgraphs, and the computations
required to prove its sufficiency are lengthy, even for a computer.
(This list is not unique and perhaps the set of possible lists could be
better understood.)

In 1611, Kepler conjectured that the most efficient (densest) way to
pack spheres in three dimensions is the hexagonal close packing (and
an infinite set of variations on it). This was proven in 1998 by Thomas
Hales, with computer assistance. The proof involves solving over
100,000 linear programming problems.

Both of these proofs have been formally verified, meaning not just that
the computations have been checked, but that the arguments by which
these results imply the mathematical theorem have been formalized
and verified. For the four-color theorem this was done in 2005 by
Gonthier and collaborators (see Gonthier 2008 in the Notices of the
AMS). For Kepler this was finished in 2014 by Hales and collaborators
(the Flyspeck project).
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 41 / 57



Interactive theorem verification Big proof

This is a fine approach to proving the four-color theorem, except that
the smallest known list has 633 subgraphs, and the computations
required to prove its sufficiency are lengthy, even for a computer.
(This list is not unique and perhaps the set of possible lists could be
better understood.)

In 1611, Kepler conjectured that the most efficient (densest) way to
pack spheres in three dimensions is the hexagonal close packing (and
an infinite set of variations on it). This was proven in 1998 by Thomas
Hales, with computer assistance. The proof involves solving over
100,000 linear programming problems.

Both of these proofs have been formally verified, meaning not just that
the computations have been checked, but that the arguments by which
these results imply the mathematical theorem have been formalized
and verified. For the four-color theorem this was done in 2005 by
Gonthier and collaborators (see Gonthier 2008 in the Notices of the
AMS). For Kepler this was finished in 2014 by Hales and collaborators
(the Flyspeck project).
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 41 / 57



Interactive theorem verification Big proof

There are also important theorems for which the proof, while
composed of subarguments which can each be understood and
checked by a human, in their totality strain the limits of human
collaboration.

Perhaps the outstanding example is the classification of finite simple
groups. This is a very central result in mathematics, whose full
statement (including the definitions of the groups) can be made in
perhaps 40 pages. According to Solomon 2018, the proof is spread
over hundreds of articles, some of which depend on unpublished work.
There is an ongoing project to publish a complete proof by 2023,
consisting of 12 volumes, each many hundreds of pages long.

In physics and the exact sciences, although proofs are valuable, the
central focus is on calculations whose results can be compared with
experiment. Such calculations can be vast by any standard: millions of
Feynman diagrams, thousands of particles or atoms, etc.. And despite
the efforts of multiple collaborations and scrutiny of reviewers,
sometimes mistakes take a while to catch.
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Interactive theorem verification g − 2 of the muon

g − 2 of the muon

An example which is somewhat infamous in particle physics is the
calculation of g − 2 for the muon, in other words its magnetic moment.
A muon has a lifetime of about 2 microseconds, long enough to do
precision measurements, but not to store. Thus the muons must be
created in a particle accelerator and this makes the measurement
challenging. Nevertheless there has been a major effort to do it and
g − 2 has been measured to better than a part in a billion.

The great interest in g − 2 is because it can be calculated to high
precision in the Standard Model. Its value depends not just on the
known particles, but on hypothetical new particles which present-day
accelerators cannot produce directly. At present the theoretical and
experimental numbers actually differ by more than 3 standard
deviations, and a new experiment has begun at Fermilab to improve
the precision to 5 standard deviations. If the difference is real, there
must be new physics beyond the Standard Model.
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Interactive theorem verification g − 2 of the muon

Clearly comparing experiment and theory in the ninth decimal place is
a tricky business. And this is not the first time g − 2 has disagreed
between theory and experiment. For several years (1996-2001) there
was also a 3 sigma disagreement, inspiring many speculations about
new physics.

This disagreement turned out to be due to a theoretical mistake. The
g − 2 calculation is particularly tricky, not so much because it involves
thousands of Feynman diagrams (this was systematized long ago) but
because it requires combining effects from several different sources:
QED, the weak interactions, and effects of virtual hadrons, in particular
an effect called “hadronic light by light scattering.” This last effect
cannot be measured, nor can it be calculated from first principles; it is
calculated using phenomenological models of hadrons.

Being something of a weak link, this part of the calculation was
scrutinized particularly carefully, with several groups each using their
own preferred models. Thus it was a surprise when a mistake was
discovered.
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Interactive theorem verification g − 2 of the muon

Such mistakes are of course not infrequent, even in the published
literature. This one was exceptional only in the long time it took to
discover it. Could this mistake, or the inevitable future mistakes, have
been caught by any sort of formal verification?

It’s not clear to me, but perhaps the answer is yes. But the challenge is
that the mistake did not come from any single theoretical assumption
or calculation, rather it came at the step of integrating various
theoretical subresults derived using different physical subtheories and
approximations, and not noticing a difference in conventions in one of
the results. So one suspects that it would only be caught by a “large
scale” formalization that covered the problem as a whole, not the
individual subtheories. And while the subtheories can to some extent
be formulated in a mathematically rigorous way, the overall problem
cannot.
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AI and theorem proving

learning 
use deep
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AI and theorem proving

Many groups are applying machine learning to make ITV more
automatic, in AITP projects such as TacticToe (Gauthier, Kalisczyk and
Urban 2017), GamePad (Huang, Dhariwal, Song and Sutskever 2018),
HOList (Bansal, Loos, Rabe, Szegedy and Wilcox 2019), CoqGym
(Yang and Deng, 2019), and GPT-F (Han et al, 2021).

In developing a proof, many choices must be made, including
Premise selection. Out of the many known true statements, which
ones should be used to make the next deduction? There could be
100’s of candidates in the current context, and if we search the
entire library of proved theorems, millions of candidates.
Tactic selection. Tactics include introduction of antecedent
clauses, rewriting and simplification, and other simple logical
steps. Modern ITV’s typically provide 40–100 tactics.

We can make an analogy between these successive choices, and the
moves in a game of solitaire.
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AI and theorem proving

A very successful approach to AI game play is reinforcement learning
(RL), as famously used by AlphaGo. Its central parts are a pair of
neural networks, one to choose moves and the other to evaluate the
score of game positions. The original AlphaGo used a corpus of
human games for initial training, and then generated games by
self-play. (Another important element is Monte Carlo tree search – it
turns out for Go that playing out a game many times with random
moves, gives a good estimate for its score.)

Similarly, the AITP systems use a corpus of proven theorems as
training data. As the verifier works through a theorem, each step of
premise and tactic selection is saved, along with a summary of the
state just before the choice is made. One can then use these pairs
(state, selection) to train networks to do premise and tactic selection.

The better developed systems (Coq, HOL) have large libraries with
30,000–70,000 (short) theorems. This is enough training data to
achieve success rates in proving similar theorems (a held-out testing
set) of around 75% (it was 50% two years ago).
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AI and theorem proving

Auto-formalization

The total corpus of mathematical texts is much larger of course – there
are about 1.5 million papers just on arXiv. Building on the success of
neural networks for machine translation, could we develop a system
which translates “informal” mathematical text to formal mathematics?

These experiments are in very early days, see for example
https://arxiv.org/abs/1611.09703 by Kaliszyk et al. One
problem is that there is no sizable corpus of aligned informal and
formal mathematics to use as training data. So far this is dealt with by
“informalizing” a formal corpus.

To my mind, a deeper problem is that mathematical texts are almost
never self-contained, and a formalization cannot make much sense
without the formal definitions of the concepts it refers to. In the best
cases a text will only refer to standard concepts, so having a library as
in Formal Abstracts would be a great help. But in many (most?) cases
research papers refer to other research papers.
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AI and theorem proving

Reinforcement learning

The big success of AlphaGo came from its ability to generate its own
training data by self-play. Amazingly, it turned out that human games
were not needed – AlphaGo Zero achieved superhuman skill without
them. Could we make a theorem prover do self-play?

At first, one might say that to “win a game” is equivalent to proving a
theorem. However this is simplistic as every step of a deduction proves
a new logical statement. Somehow the results have to be scored
according to how “significant,” “interesting” or “useful” the statement is,
or how close the new statement is to a significant result.

Only rewarding the theorems considered interesting or significant by
humans may not be giving the computer enough feedback. So, it may
be necessary to give the computer its own ability to judge what is
interesting. From an ML point of view this is just another scoring
function which could be learned.
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AI and theorem proving

What is “interesting” mathematics? In Lenat’s AM system (1976) this
was defined by hand-coded heuristics.

Perhaps given a large semi-formal corpus, this could be inferred by
similarity of a statement to the statements in the corpus. After all,
people try to make interesting statements and avoid uninteresting
ones.

Rather than make an a priori definition of interesting, one can say that
an interesting concept is one which aids reasoning. To the extent that
the system can judge the complexity of its proofs, then a new
statement which makes many proofs simpler is ipso facto interesting.

One could consider efficacy at more general tasks. Perhaps textbook
problems would be a good source. As another example, given a
mathematical definitions such as “finite group,” can the system take a
pair of randomly chosen examples and efficiently prove that they are
isomorphic or not isomorphic. As an even harder test, can the system
enumerate groups with up to k elements?
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Summary and conclusions

Summary and conclusions

Some major lines of progress in computers and mathematics:
General advances in hardware and software
More and larger knowledge repositories, with better metadata
Neural networks and deep learning
Interactive theorem verification, theorem libraries and formal
abstracts
New styles of collaboration along the lines of the Stack project,
Polymath, ...
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Summary and conclusions

Speculations and opportunities

In the end I don’t think there are very clear predictions to make for
2030, but let me go out on a limb and make some anyways.

There will be textbooks which integrate computation – not just
numerics but many of the new technologies we discuss – in
groundbreaking ways, making today’s textbooks look dated.
Significant new discoveries and proofs will continue to be made
using computational experiment and numerical methods, but of
the general character we have seen: solving intricate problems by
combinatorial search, producing large datasets leading to
statistical conjectures, etc..
ITVs will be much easier to use, thanks to AI automation. An
introductory course in theorem proving will be a common
advanced undergraduate offering. They will have a status much
like computer algebra systems now – a convenient tool that some
people rely on and many people use (say) once a month.
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using computational experiment and numerical methods, but of
the general character we have seen: solving intricate problems by
combinatorial search, producing large datasets leading to
statistical conjectures, etc..
ITVs will be much easier to use, thanks to AI automation. An
introductory course in theorem proving will be a common
advanced undergraduate offering. They will have a status much
like computer algebra systems now – a convenient tool that some
people rely on and many people use (say) once a month.

Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? CERN Colloquium, Sep 30, 2021 54 / 57



Summary and conclusions

A large database of formal mathematics will exist, built by some
combination of human and automated work. Perhaps the overall
organization will be created or tuned by humans, while the bulk of
the formalization will be automatic.
Semantic mathematical search will be a standard part of our
literature searches. At least one nontrivial connection between
different mathematical fields will be discovered this way.
At present it is hard to reuse code from math/physics projects –
this problem will be largely solved.

But in 2030 will computers have invented or proven any major result by
themselves? Math AGI, either based on the human mathematical
literature, or which trains itself ab initio, is an old dream.
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Summary and conclusions

While progress in AI is rapid, we don’t have a good way to guess how
far away this dream might be. But here are some thoughts:

Math reasoning – at the level of individual steps – is not likely to
be easier than general reasoning in other large domains.
Other domains may have advantages, such as more training data.
The advantages of math as a domain are that one can use
arbitrarily long chains of reasoning, and that success depends
much less on abilities other than logical reasoning. So, even if
general reasoning capability is developed in many domains at
once, it will have major consequences in math before most fields.
Significant advances are being made in general reasoning, and
breakthroughs may happen soon.
The full consequences of a breakthrough will take around ten
years to realize. For example, MCTS was introduced in computer
Go around 2006, and produced significant improvements by 2009,
leading to AlphaGo in 2016.
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