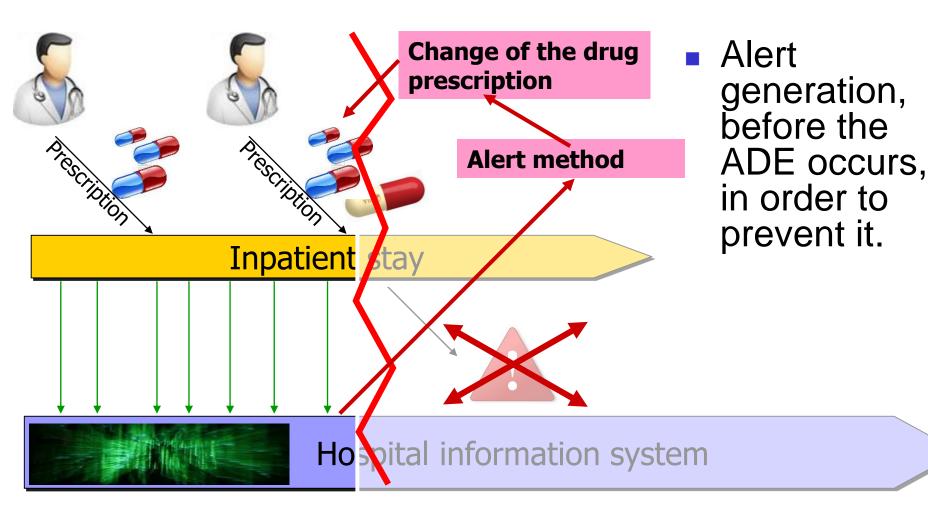
Example : machine learning for adverse drug events prevention

Emmanuel Chazard, Grégoire Ficheur, Antoine Lamer

Adverse drug events

- ADEs = Adverse Drug Events
- Several definitions. Institute of Medicine (2007):
 - "An injury resulting from the use of a drug"
 - "An injury due to medication management rather than the underlying condition of the patient"
- Epidemiological data:
 - 98,000 deaths per year in the US
 - An ADE would occur in 5-9% of inpatient stays

Prospective prevention of ADEs



Adverse drug events prevention by rule-based AI: CDSS

ADE prevention using rule-based CDSS

CPOE:

- computerized physician order entry
- process of electronic entry of medical practitioner instructions for the treatment of (hospitalized) patients

CDSS:

- Clinical decision support system
- Health information technology system that is designed to provide physicians and other health professionals with clinical decision support
- Often based on level 1 artificial intelligence (rules)
- CPOE + CDSS = the "obvious" solution for adverse drug events prevention?

CDSS & CPOE: Over-alerting, alerte-fatigue => poor clinical efficiency!

- **Over-alerting**: too numerous and inappropriate alerts
- Alerts interrupt the clinicians' workflow and induce alert-fatigue
 - Too many alerts
 - => time and mental energy consumption
 - => a mental state whereby users start ignoring critical alerts along with those that may be clinically insignificant
- May prevent CDSS from improving patient safety
- Alert override:
 - up to 96% of alerts are overridden by prescribers
 - But alert override is often inappropriate, and is sometimes followed by actual ADEs

Machine learning for ADE prevention

Idea driven by Pr Regis Beuscart, head of the PSIP Project

Funded by the European Research Council, 7th framework program (agreement N°216130)

Administrative data

88 years old woman

Diagnoses

- I10 Arterial hypertension
- Z8671 Personal history of myocardial ischemia
- I620 Non-traumatic subdural hemorrhage

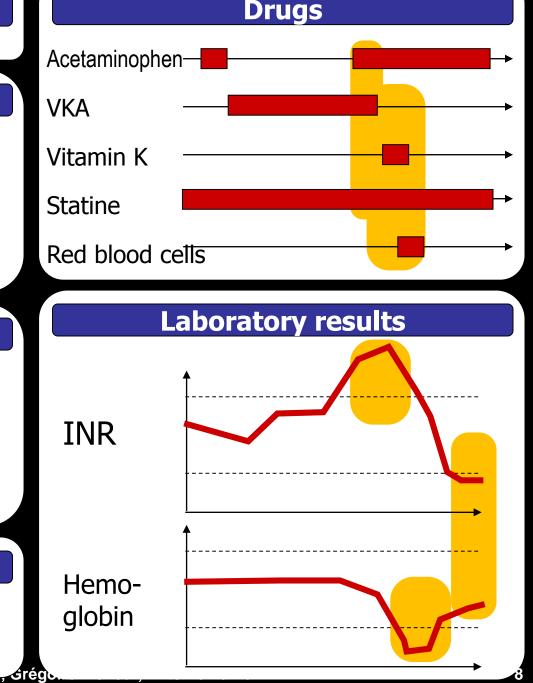
Medical procedures

ABJA002 Drainage of an acute subdural hemorrhage, by craniotomy FELF001 Transfusion

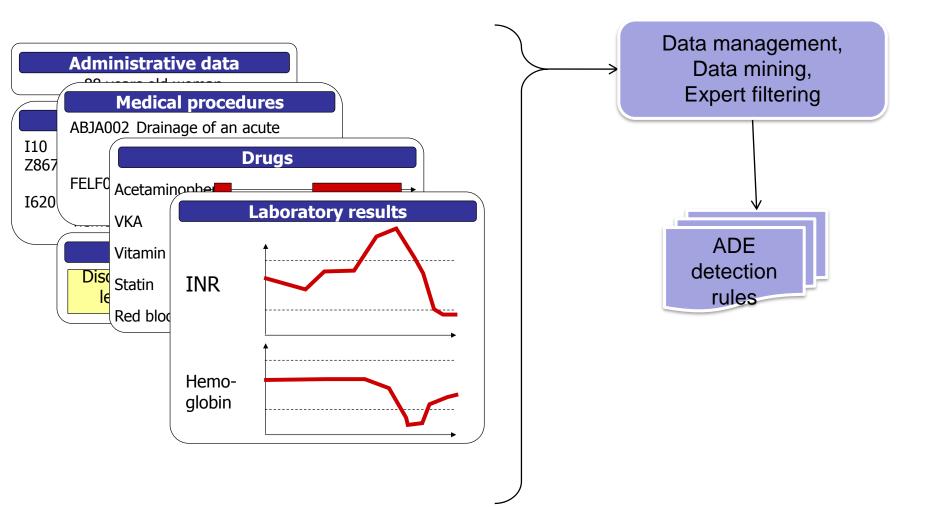
Free-text reports

Surgical report

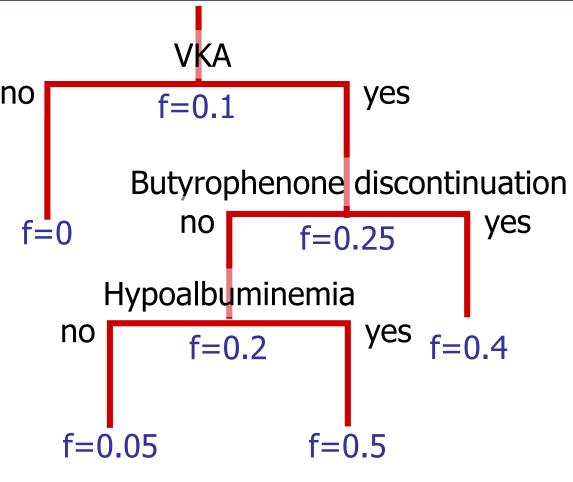
Discharge letter



Available data: ~175,000 inpatient stays from 6 hospitals (F, Dk, Bu)

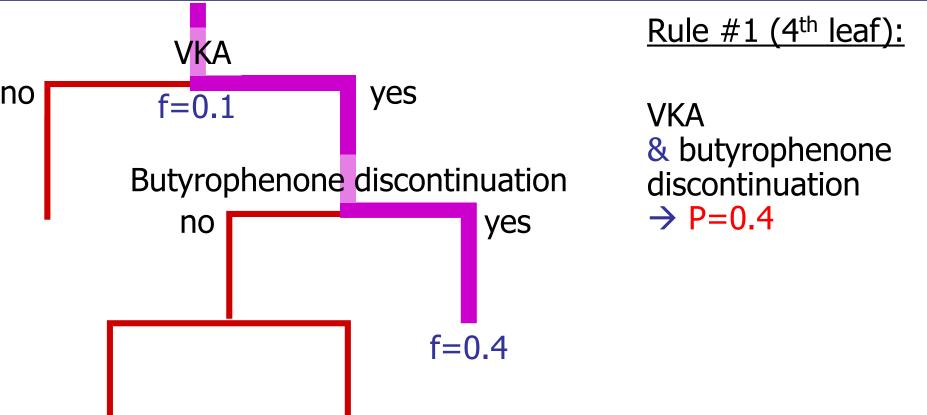


Artificial intelligence Example of decision tree



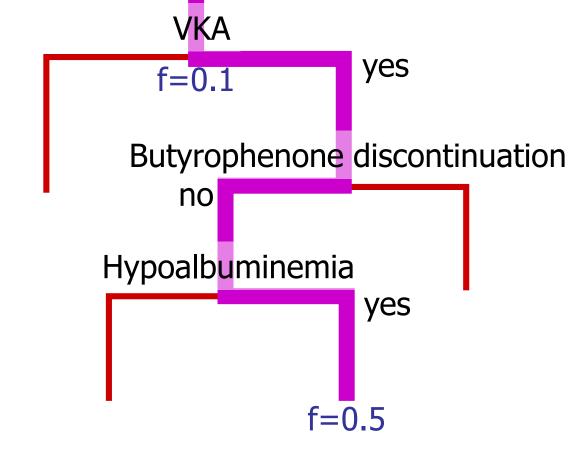
- VKA= vitamin K antagonists (anticoagulant)
- INR= international normalized ratio.
 Evaluates VKA activity
- INR>5 => risk of hemorrhage
- The tree attempts to explain INR>5

Artificial intelligence Example of decision tree



Artificial intelligence Example of decision tree

Rule #2 (3rd leaf):

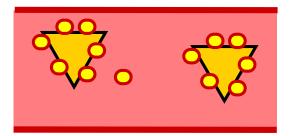


VKA & no butyrophenone discontinuation & hypoalbuminemia $\rightarrow P=0.5$

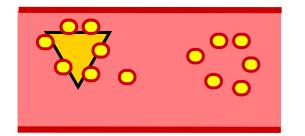
Artificial intelligence Expert validation of rules

Albumine = plasmatic protein to which VKA bind. Only the non-bound part is biologically active.

Serum albumin



Normal state: 99% of the VKA bind to albumin. Only 1% of VKA are biologically active. The intake is based on it.



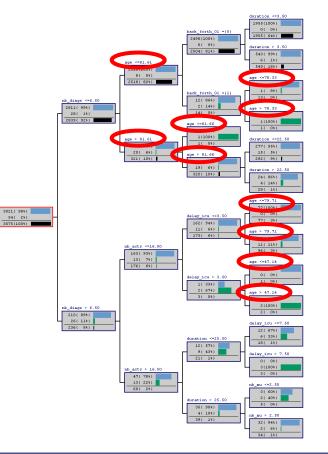
O VKA

<u>Hypoalbuminemia:</u> decrease of the bound fraction, increase of the non-bound fraction => too high INR (with constant intake)

=> Need for validation, explanations, reorganization!

Actual result: risk of death

Explanatory variables: ~20 administrative variables, ~500 laboratory results, ~500 drugs. Result: old people die more than young people...

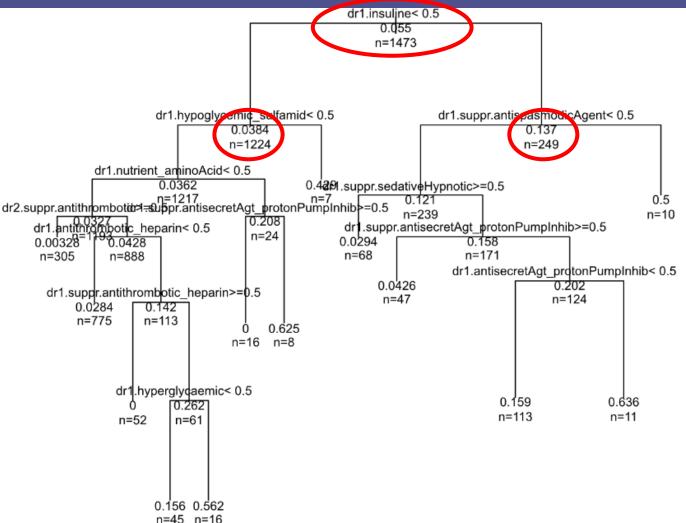


Base d	le conna	issances	: 15 r	ègles
--------	----------	----------	--------	-------

N°	N°SEGMENT	Condition d'appartenance	Support	Conclusion	AE_1 (C7=0)	AE_2 (C7=1)
1	10	SI age <=81.66 et age > 81.61 et nb_diags <=6.50	0.0003	AE_2 (C7=1)	0.0000	1.0000
2	16	SI duration <=3.50 et back_forth_01 ={0} et age <=81.61 et nb_diags <=6.50	0.6358	AE_1 (C7=0)	1.0000	0.0000
3	17	SI duration > 3.50 et back_forth_01 ={0} et age <=81.61 et nb_diags <=6.50	0.1785	AE_1 (C7=0)	0.9891	0.0109
4	18	SI age <=78.33 et back_forth_01 ={1} et age <=81.61 et nb_diags <=6.50	0.0042	AE_1 (C7=0)	0.9231	0.0769
5	19	SI age > 78.33 et back_forth_01 ={1} et age <=81.61 et nb_diags <=6.50	0.0003	AE_2 (C7=1)	0.0000	1.0000
6	20	SI duration <=22.50 et age > 81.66 et age > 81.61 et nb_diags <=6.50	0.0950	AE_1 (C7=0)	0.9486	0.0514
7	21	SI duration > 22.50 et age > 81.66 et age > 81.61 et nb_diags <=6.50	0.0091	AE_1 (C7=0)	0.8571	0.1429
8	22	SI age <=79.71 et delay_icu <=3.50 et nb_acts <=16.50 et nb_diags > 6.50	0.0250	AE_1 (C7=0)	1.0000	0.0000
9	23	SI age > 79.71 et delay_icu <=3.50 et nb_acts <=16.50 et nb_diags > 6.50	0.0312	AE_1 (C7=0)	0.8854	0.1146
10	24	SI age <=47.14 et delay_icu > 3.50 et nb_acts <=16.50 et nb_diags > 6.50	0.0003	AE_1 (C7=0)	1.0000	0.0000
11	25	SI age > 47.14 et delay_icu > 3.50 et nb_acts <=16.50 et nb_diags > 6.50	0.0007	AE_2 (C7=1)	0.0000	1.0000
12	26	SI delay_icu <=7.50 et duration <=25.50 et nb_acts > 16.50 et nb_diags > 6.50	0.0059	AE_1 (C7=0)	0.6667	0.3333
13	27	SI delay_icu > 7.50 et duration <=25.50 et nb_acts > 16.50 et nb_diags > 6.50	0.0010	AE_2 (C7=1)	0.0000	1.0000
14	28	SI nb_mu <=2.50 et duration > 25.50 et nb_acts > 16.50 et nb_diags > 6.50	0.0016	AE_1 (C7=0)	0.6000	0.4000
15	29	SI nb_mu > 2.50 et duration > 25.50 et nb_acts > 16.50 et nb_diags > 6.50	0.0111	AE_1 (C7=0)	0.9412	0.0588

Date de création : 02/05/2008 16:39:16

Actual results: risk factors of hyperglycemia...

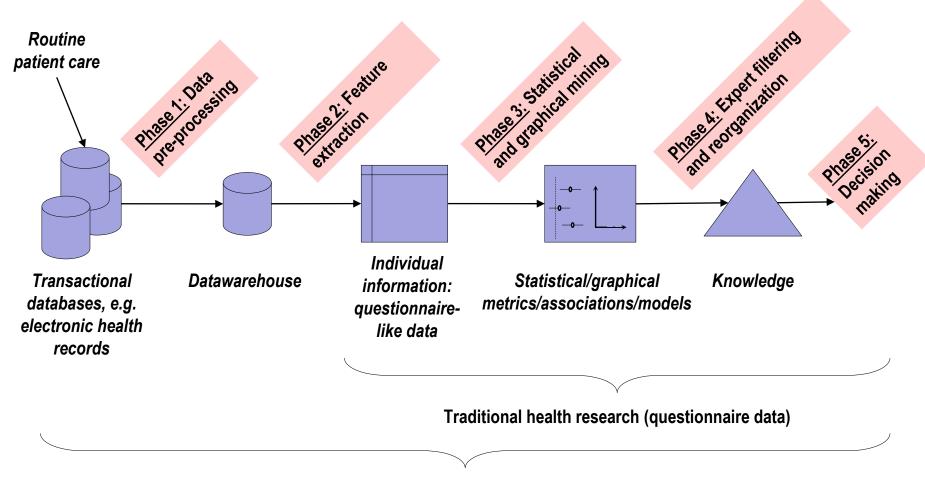


The failure of fully-automated machine learning

- Supervised data mining:
 - Good predictive power
 - Enables to filter, reorganize and explain knowledge
- "Black boxes", such as deep learning
 - Better predictive power
 - Does not enable to manage knowledge!
- However, some other steps are from far more crucial: feature extraction

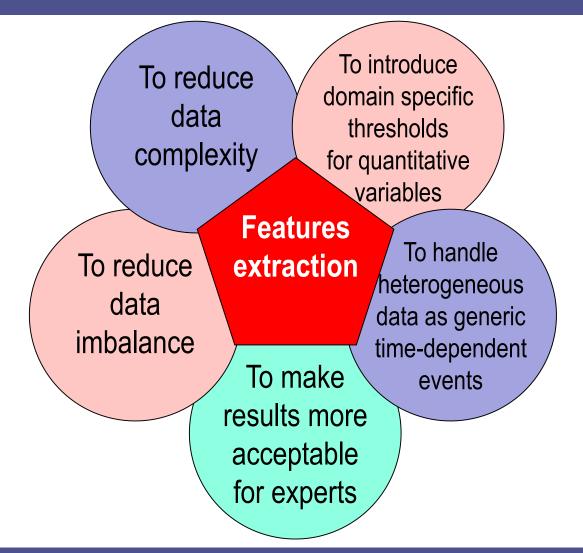
Feature extraction

Structured data reuse process in healthcare

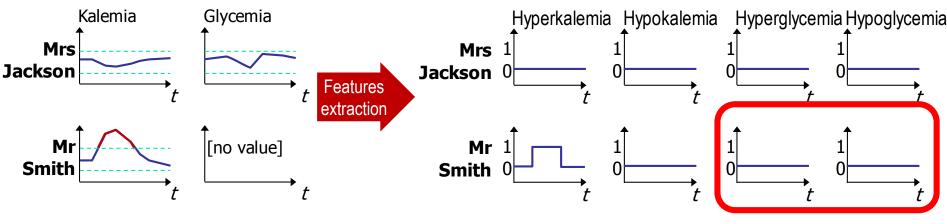


Health research based on data reuse

The objectives of feature extraction



Feature extraction, example 1: laboratory results

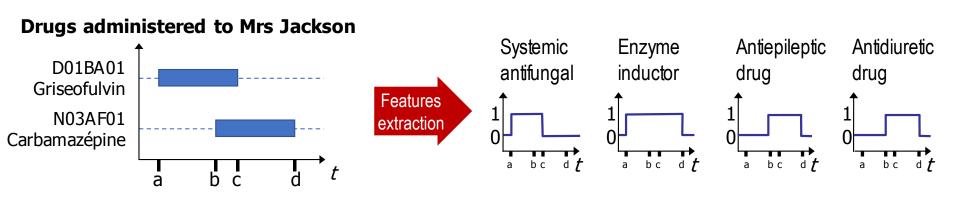


Example of missing data handling

• Formally:

- Example of 2 patients, 2 parameters measured 5 times
- Before: 1 table with 2 lines + 1 table with 10 lines
- After: 1 table with 2 lines

Feature extraction, example 2: administered drugs



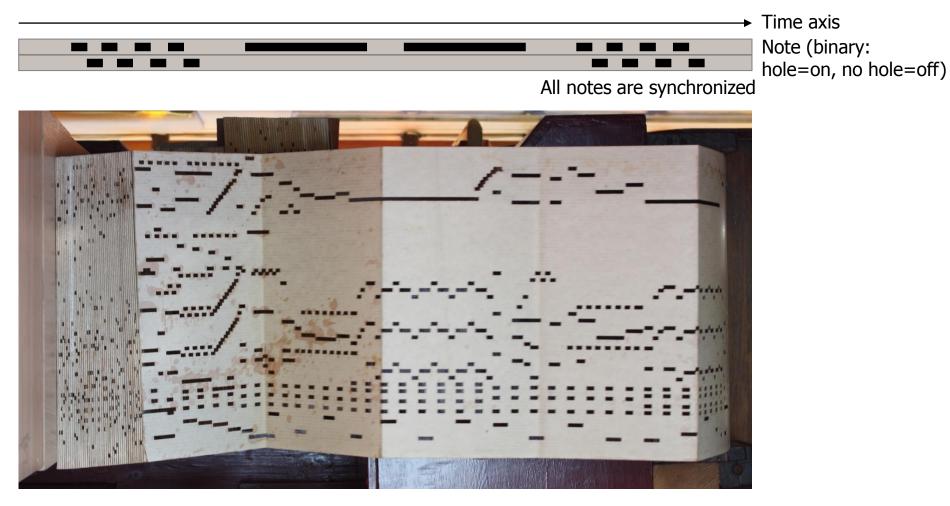
Formally:

- Example of 1 patient, 2 administered drugs
- Before: 1 table with 1 line + 1 table with 2 lines
- After: 1 table with 1 line

Book music

Street organ (Credit: Roman Bonnefoy - Creative Commons Attribution-Share Alike 3.0)

Book music



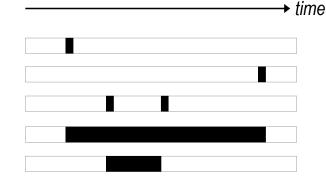
Book music (resized picture - Credit: Richard Ash - Creative Commons Attribution-Share Alike 2.0)

e.g. representation of patient's flow

Data in the datawarehouse

Emergency i	room
ICU	
	Cardiology
	Cardiology

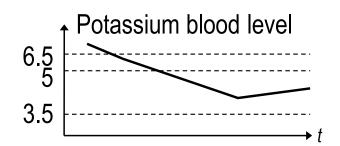
Admission Discharge Transfer Hospital stay Intensive care unit



Example of "book music" data representation

e.g. representation of laboratory results

Data in the datawarehouse



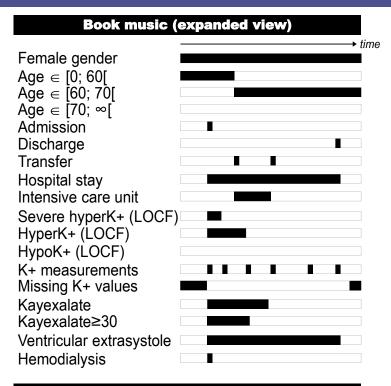
Example of "book music" data representation

Severe hyperK+ (LOCI HyperK+ (LOCF) HypoK+ (LOCF) K+ measurements Missing K+ values

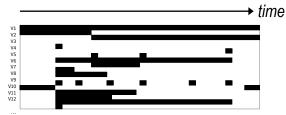
`F) [
Γ			 	
Γ				

→ time

e.g. tabular representation



Book music (condensed view)



Example of tabular representation

id	Variable	From	То
1	female	1960-06-30	+inf
1	age0_60	1960-06-30	2020-06-29
1	Age60_70	2020-06-30	2030-06-29
1	transfer	2020-06-30	2020-06-30
1	transfer	2020-07-03	2020-07-03
1	inhospital	2020-06-29	2020-07-10
1	hyperk+	2020-06-29	2020-06-30
1	k+measure	2020-06-29	2020-06-29
1	k+measure	2020-06-29	2020-06-29

The place of domain-specific knowledge

- Literature review published par Meystre et al. in 2017
- Classifications performed by Arnaud
 Dezetrée & Adrien
 Lecoeuvre

38 © 2017

IMIA and Schattauer GmbH

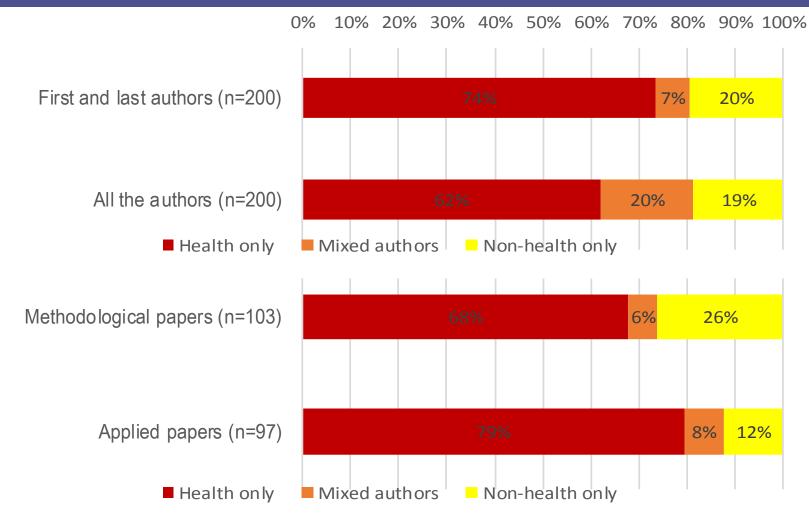
Clinical Data Reuse or Secondary Use: Current Status and Potential Future Progress

- S. M. Meystre^a, C. Lovis^b, T. Bürkle^c, G. Tognola^d, A. Budrionis^e, C. U. Lehmann^f
- Medical University of South Carolina, Charleston, SC, USA
- ^b Division of Medical Information Sciences, University Hospitals of Geneva, Switzerland
- ^c University of Applied Sciences, Bern, Switzerland
- ^d Institute of Electronics, Computer and Telecommunication Engineering, Italian Natl. Research Council IEIIT-CNR, Milan, Italy
- Norwegian Centre for E-health Research, University Hospital of North Norway, Tromsø, Norway
 ^f Departments of Biomedical Informatics and Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA

2021-10-15

Er

The place of domain-specific knowledge



Emmanuel Chazard, Grégoire Ficheur, Antoine Lamer

Needs / wishes

 Defining methodological framework or methods for feature extraction

 Methods for statistical mining of timedependent data