
Example : machine learning 

for adverse drug events 

prevention
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Adverse drug events

 ADEs = Adverse Drug Events

 Several definitions. Institute of Medicine (2007):
 “An injury resulting from the use of a drug”

 “An injury due to medication management 
rather than the underlying condition of the patient”

 Epidemiological data:
 98,000 deaths per year in the US

 An ADE would occur in 5-9% of inpatient stays
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Prospective prevention of ADEs

 Alert 
generation, 
before the 
ADE occurs, 
in order to 
prevent it.
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Inpatient stay

Hospital information system

Alert method

Change of the drug 
prescription
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Adverse drug events 

prevention by rule-based AI: 

CDSS
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ADE prevention using 

rule-based CDSS
 CPOE: 

 computerized physician order entry

 process of electronic entry of medical practitioner 
instructions for the treatment of (hospitalized) patients 

 CDSS: 

 Clinical decision support system

 Health information technology system that is designed to 
provide physicians and other health professionals with 
clinical decision support

 Often based on level 1 artificial intelligence (rules)

 CPOE + CDSS = the “obvious” solution for adverse 
drug events prevention?
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CDSS & CPOE: Over-alerting, alerte-fatigue

=> poor clinical efficiency!

 Over-alerting: too numerous and inappropriate alerts

 Alerts interrupt the clinicians’ workflow and induce 
alert-fatigue

 Too many alerts

 => time and mental energy consumption

 => a mental state whereby users start ignoring critical 
alerts along with those that may be clinically insignificant

 May prevent CDSS from improving patient safety

 Alert override:

 up to 96% of alerts are overridden by prescribers

 But alert override is often inappropriate, and is 
sometimes followed by actual ADEs
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Machine learning for ADE 

prevention

Idea driven by

Pr Regis Beuscart, head of 

the PSIP Project
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Administrative data
88 years old woman

Diagnoses

I10 Arterial hypertension
Z8671 Personal history of myocardial 

ischemia
I620 Non-traumatic subdural 

hemorrhage

Medical procedures

ABJA002 Drainage of an acute 
subdural hemorrhage, by 
craniotomy

FELF001 Transfusion

Free-text reports

Discharge 
letter

Surgical report

Drugs

Laboratory results

Acetaminophen

VKA

Vitamin K

Statine

Red blood cells

INR

Hemo-
globin



Available data: ~175,000 inpatient 

stays from 6 hospitals (F, Dk, Bu)
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ADE 

detection 

rules

Administrative data
88 years old woman

Diagnoses

I10 Arterial hypertension
Z8671 Personal history of myocardial 

ischemia
I620 Non-traumatic subdural 

hemorrhage

2015-03-19

Medical procedures

ABJA002 Drainage of an acute 
subdural hemorrhage, by 
craniotomy

FELF001 Transfusion

Free-text reports

Discharge 
letter

Surgical report

Drugs

Acetaminophene

VKA

Vitamin K

Statin

Red blood cells

28

Laboratory results

INR

Hemo-
globin

Data management, 

Data mining, 

Expert filtering
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Artificial intelligence

Example of decision tree
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f=0.1

f=0 f=0.25

VKA
no yes

Butyrophenone discontinuation
no yes

f=0.2

Hypoalbuminemia
no yes

f=0.4

f=0.05 f=0.5

 VKA= vitamin K 
antagonists 
(anticoagulant)

 INR= 
international 
normalized ratio. 
Evaluates VKA 
activity

 INR>5 => risk of 
hemorrhage

 The tree
attempts to 
explain INR>5

10



Artificial intelligence

Example of decision tree
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f=0.1no

no yes

f=0.4

Rule #1 (4th leaf):

VKA 
& butyrophenone
discontinuation
 P=0.4
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VKA

yes

Butyrophenone discontinuation



Artificial intelligence

Example of decision tree

2021-10-15 Emmanuel Chazard, Grégoire Ficheur, Antoine Lamer

f=0.1 yes

no

yes

f=0.5

Rule #2 (3rd leaf):

VKA 
& no 
butyrophenone
discontinuation 
& hypoalbuminemia
 P=0.5
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VKA

Butyrophenone discontinuation

Hypoalbuminemia



Artificial intelligence 

Expert validation of rules
Albumine = plasmatic protein to which VKA bind. Only the non-bound 
part is biologically active.
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Serum albumin VKA

Normal state:
99% of the VKA bind to albumin.
Only 1% of VKA are biologically active. 
The intake is based on it.

Hypoalbuminemia:
decrease of the bound fraction,
increase of the non-bound fraction
=> too high INR (with constant intake)

=> Need for validation, explanations, reorganization!
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Actual result: risk of death
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Explanatory variables: ~20 administrative variables, ~500 laboratory results, ~500 
drugs. Result: old people die more than young people…



Actual results: risk factors of 

hyperglycemia…
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The failure of fully-automated 

machine learning

 Supervised data mining:

 Good predictive power

 Enables to filter, reorganize and explain 

knowledge

 “Black boxes”, such as deep learning

 Better predictive power

 Does not enable to manage knowledge!

 However, some other steps are from far more 

crucial: feature extraction
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Feature extraction
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Structured data reuse process in 

healthcare
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Routine 

patient care

Transactional

databases, e.g. 

electronic health 

records

Datawarehouse
Individual 

information: 

questionnaire-

like data

Statistical/graphical 

metrics/associations/models

Knowledge

Traditional health research (questionnaire data)

Health research based on data reuse
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The objectives

of feature extraction
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To make

results more

acceptable

for experts

To reduce

data

imbalance

To reduce

data

complexity

To introduce

domain specific

thresholds

for quantitative

variables

To handle

heterogeneous

data as generic

time-dependent

events

Features

extraction

19



Feature extraction, example 1:

laboratory results

2021-10-15 Emmanuel Chazard, Grégoire Ficheur, Antoine Lamer

 Formally:

 Example of 2 patients, 2 parameters measured 5 
times

 Before: 1 table with 2 lines + 1 table with 10 lines

 After: 1 table with 2 lines

Features

extraction

Mr

Smith

Mrs

Jackson

t

Kalemia

t

Glycemia 

t

[no value]

t

Hyperkalemia

t

1

0

Hypokalemia

t

1

0

Hyperglycemia

t

1

0

Hypoglycemia

t

1

0

t

1

0

t

1

0

t

1

0

t

1

0
Mr

Smith

Mrs

Jackson

Example of missing data handling
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Feature extraction, example 2:

administered drugs
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 Formally:

 Example of 1 patient, 2 administered drugs 

 Before: 1 table with 1 line + 1 table with 2 lines

 After: 1 table with 1 line

Drugs administered to Mrs Jackson

D01BA01
Griseofulvin

t

N03AF01
Carbamazépine

a b c d

Features

extraction

Systemic

antifungal

t

1

0

Enzyme

inductor

t

1

0

Antiepileptic

drug

t

1

0

Antidiuretic

drug

t

1

0

a b c d a b c d a b c d a b c d
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Book music

Street organ (Credit: Roman Bonnefoy - Creative Commons Attribution-Share Alike 3.0)
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Book music

Book music (resized picture - Credit: Richard Ash - Creative Commons Attribution-Share Alike 2.0)
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Time axis

Note (binary: 
hole=on, no hole=off)

All notes are synchronized



e.g. representation of 

patient’s flow
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Data in the datawarehouse Example of “book music” data representation

Emergency room
ICU

Cardiology

Admission
Discharge
Transfer
Hospital stay
Intensive care unit

time



e.g. representation of 

laboratory results
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Data in the datawarehouse Example of “book music” data representation

Potassium blood level

t
3.5

5
6.5

time

Severe hyperK+ (LOCF)
HyperK+ (LOCF)
HypoK+ (LOCF)
K+ measurements
Missing K+ values



e.g. tabular representation
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Female gender
Age  [0; 60[
Age  [60; 70[
Age  [70; ∞[
Admission
Discharge
Transfer
Hospital stay
Intensive care unit

time

Severe hyperK+ (LOCF)
HyperK+ (LOCF)
HypoK+ (LOCF)
K+ measurements

Kayexalate

Ventricular extrasystole
Hemodialysis

Kayexalate≥30

Missing K+ values

time

Book music (expanded view)

Book music (condensed view)

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12

…

Example of tabular representation

id Variable From To

1 female 1960-06-30 +inf

1 age0_60 1960-06-30 2020-06-29

1 Age60_70 2020-06-30 2030-06-29

… … … …

1 transfer 2020-06-30 2020-06-30

1 transfer 2020-07-03 2020-07-03

1 inhospital 2020-06-29 2020-07-10

… … … …

1 hyperk+ 2020-06-29 2020-06-30

1 k+measure 2020-06-29 2020-06-29

1 k+measure 2020-06-29 2020-06-29

… … … …



The place of domain-specific 

knowledge

 Literature 
review 
published par 
Meystre et al. 
in 2017

 Classifications 
performed by 
Arnaud 
Dezetrée & 
Adrien 
Lecoeuvre
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The place of 

domain-specific knowledge
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74%

62%

7%

20%

20%

19%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

First and last authors (n=200)

All the authors (n=200)

Health only Mixed authors Non-health only

68%

79%

6%

8%

26%

12%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Methodological papers (n=103)

Applied papers (n=97)

Health only Mixed authors Non-health only
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Needs / wishes

 Defining methodological framework or 

methods for feature extraction

 Methods for statistical mining of time-

dependent data
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