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Message Passing



๏Imagine a concrete example: given a social-media user, 
who will she vote for at the next elections? 

๏The graph here comes from social-media connections 

๏The features are what we know for a given user (gender, 
age, education, etc.) 

๏We want to gather information on someone from the 
social network of that person 

๏we might know who some of her connections voted for 

๏We will use NNs to model the influence (message passed) 
of each user on her connection and learn from data 
which are the relevant connections. We are engineering 
features 

๏A final classifier will give us the answer we want 

๏You might become president with this + target pressure 
(ads, fake news, etc.)

Learning from Graph: an example
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 DON’T DO IT!!!!!! 



๏Graphs Nets are architectures based on 
an abstract representation of a given 
dataset 

๏Each example in a dataset is 
represented as a set of vertices 

๏Each vertex is embedded in the 
graph as a vector of features 

๏Vertices are connected through 
links 

๏Messages are passed through links 
and aggregated on the vertices 

๏A new representation of each node 
is created, based on the 
information gathered across the 
graph

Graph Networks
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m3→2 = g( ⃗f3, ⃗f2)

m1→2 = g( ⃗f1, ⃗f2)

m4→2 = g( ⃗f4, ⃗f2)
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v′ 1 = ⃗f ′ 1(m2→1, . . . , m6→1)

v′ 2 = ⃗f ′ 2(m1→2, . . . , m6→2)

v′ 4 = ⃗f ′ 4(m1→4, . . . , m6→4)

v′ 5 = ⃗f ′ 5(m1→5, . . . , m6→5)

v′ 6 = ⃗f ′ 6(m1→6, . . . , m5→6)

v′ 3 = ⃗f ′ 3(m1→3, . . . , m6→3)
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๏The task-solving step can 
happen on each vertex (is this 
a real particle or noise?) or 
across the graph (is this a b-
jet?) 

๏Usually, this is done with a 
DNN taking 

๏the initial features fi 

๏the learned representation 
fi’ 

๏[optional] some ground-truth 
label (for classifiers)

The task-solving step
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……
Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss



…and repeat
๏Once message is passed, 
aggregated at each vertex V 
and processed, it creates a 
new representation of each 
vertex 

๏You could start from 
coordinates in real space 
+ some feature 

๏Build function of them 

๏Build functions of 
functions of them 

๏At each step, you improve 
knowledge on your vertex V

10



…and repeat

11

๏Once message is passed, 
aggregated at each vertex V 
and processed, it creates a 
new representation of each 
vertex 

๏You could start from 
coordinates in real space 
+ some feature 

๏Build function of them 

๏Build functions of 
functions of them 

๏At each step, you improve 
knowledge on your vertex V



…and repeat

12

๏Once message is passed, 
aggregated at each vertex V 
and processed, it creates a 
new representation of each 
vertex 

๏You could start from 
coordinates in real space 
+ some feature 

๏Build function of them 

๏Build functions of 
functions of them 

๏At each step, you improve 
knowledge on your vertex V



…and repeat

13

๏Once message is passed, 
aggregated at each vertex V 
and processed, it creates a 
new representation of each 
vertex 

๏You could start from 
coordinates in real space 
+ some feature 

๏Build function of them 

๏Build functions of 
functions of them 

๏At each step, you improve 
knowledge on your vertex V



…and repeat

14

๏Once message is passed, 
aggregated at each vertex V 
and processed, it creates a 
new representation of each 
vertex 

๏You could start from 
coordinates in real space 
+ some feature 

๏Build function of them 

๏Build functions of 
functions of them 

๏At each step, you improve 
knowledge on your vertex V



With equations…
๏Your message at iteration t is some function M of 
the sending and receiving features, plus some vertex 
features (e.g., business relation vs friendship in 
social media)

ht
w

ht
v

evw

Mt(ht
v, ht

w, evw)
๏The message carried to a vertex v is aggregated by 
some function (typically sum, but also Max, Min, 
etc.)

mt+1
v = ∑

w∈G(v)

Mt(ht
v, ht

w, evw)
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With equations…
๏The state of vertex v is updated by some function U 
of the current state and the gathered message

ht+1
v = Ut(ht

v, mt+1
v )

๏After T iterations, the last representations of the 
graph vertices are used to derive the final output 
answering the question asked (classification, 
regression, etc.), typically through a NN

̂y = R(hT
v |v ∈ G)
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ht+1
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Learning Message
๏Typically, the M, U, and R functions are learned from data 

๏Expressed as neural networks (fully connected NNs, recurrent NNs, etc.) 

๏Which networks to use depends on the specific problem, as much as the 
graph-building rules 

๏But you could inject domain knowledge in the game 

๏You might know that SOME message is carried by some specific functions 
(e.,g., Newton’s low for N-body system simulation) 

๏You could then use analytic functions for some message 

๏You could still use a learned function for other messages 

๏The trick is dealing with differentiable functions not to spoil your back 
propagation 

๏Graph networks become a tool for probabilistic programming
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A little bit of History
๏(in this millenium) Graph 
networks started (as often 
it is the case) with a 
Yann LeCun et al. paper 

๏They tried to generalise 
CNNs beyond the regular-
array dataset paradigm 

๏They replaced the 
translation-invariant 
kernel structure of CNNs 
with hierarchical 
clustering 

https://arxiv.org/abs/1312.6203

multiscale clusterings that are provably guaranteed to behave well w.r.t. Laplacian on the graph is
still an open area of research. In this work we will use a naive agglomerative method.

Figure 1 illustrates a multiresolution clustering of a graph with the corresponding neighborhoods.

Figure 1: Undirected Graph G = (⌦0,W ) with two levels of clustering. The original points are
drawn in gray.

2.3 Deep Locally Connected Networks

The spatial construction starts with a multiscale clustering of the graph, similarly as in [3] We
consider K scales. We set ⌦0 = ⌦, and for each k = 1 . . .K, we define ⌦k, a partition of ⌦k�1

into dk clusters; and a collection of neighborhoods around each element of ⌦k�1:

Nk = {Nk,i ; i = 1 . . . dk�1} .

With these in hand, we can now define the k-th layer of the network. We assume without loss of
generality that the input signal is a real signal defined in ⌦0, and we denote by fk the number of
“filters” created at each layer k. Each layer of the network will transform a fk�1-dimensional signal
indexed by ⌦k�1 into a fk-dimensional signal indexed by ⌦k, thus trading-off spatial resolution
with newly created feature coordinates.

More formally, if xk = (xk,i ; i = 1 . . . fk�1) is the dk�1 ⇥ fk�1 is the input to layer k, its the
output xk+1 is defined as

xk+1,j = Lkh

0

@
fk�1X

i=1

Fk,i,jxk,i

1

A (j = 1 . . . fk) , (2.1)

where Fk,i,j is a dk�1 ⇥ dk�1 sparse matrix with nonzero entries in the locations given by Nk, and
Lk outputs the result of a pooling operation over each cluster in ⌦k. This construcion is illustrated
in Figure 2.

In the current code, to build ⌦k and Nk we use the following construction:

W0 = W

Ak(i, j) =
X

s2⌦k(i)

X

t2⌦k(j)

Wk�1(s, t) , (k  K)

Wk = rownormalize(Ak) , (k  K)

Nk = supp(Wk) . (k  K)

3
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A little bit of History
๏ The idea of message passing can be 
tracked to a ’15 paper by Duvenaud et al.  

๏ The paper introduces “a convolutional 
neural network that operates directly on 
graphs” 

๏ Language is different, but if you look at 
the algorithm it is pretty much what we 
discussed (for specific network 
architecture choices)
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Figure 3: Left: Comparison of pairwise distances between molecules, measured using circular fin-
gerprints and neural graph fingerprints with large random weights. Right: Predictive performance
of circular fingerprints (red), neural graph fingerprints with fixed large random weights (green) and
neural graph fingerprints with fixed small random weights (blue). The performance of neural graph
fingerprints with large random weights closely matches the performance of circular fingerprints.

4.1 Examining learned features

To demonstrate that neural graph fingerprints are interpretable, we show substructures which most
activate individual features in a fingerprint vector. Each feature of a circular fingerprint vector can
each only be activated by a single fragment of a single radius, except for accidental collisions.
In contrast, neural graph fingerprint features can be activated by variations of the same structure,
making them more interpretable, and allowing shorter feature vectors.

Solubility features Figure 4 shows the fragments that maximally activate the most predictive fea-
tures of a fingerprint. The fingerprint network was trained as inputs to a linear model predicting
solubility, as measured in [4]. The feature shown in the top row has a positive predictive relationship
with solubility, and is most activated by fragments containing a hydrophilic R-OH group, a standard
indicator of solubility. The feature shown in the bottom row, strongly predictive of insolubility, is
activated by non-polar repeated ring structures.

Fragments most
activated by

pro-solubility
feature

2
2+

2

1+

2

2+

2+

Fragments most
activated by

anti-solubility
feature

Figure 4: Examining fingerprints optimized for predicting solubility. Shown here are representative
examples of molecular fragments (highlighted in blue) which most activate different features of the
fingerprint. Top row: The feature most predictive of solubility. Bottom row: The feature most
predictive of insolubility.
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๏A few recent reviews that could guide you through the many 
applications and networks 

๏A nice BLOG article on GNNs 

๏Another nice BLOG article on GNNs 

๏A generic review 

๏A particle-physics specific one 

๏A few GitHub entries 

๏JEDI-net Interaction Networks for jet tagging on these data 

๏PUPPIML: GGNN for pileup subtraction 

๏A small GarNet example that fits an FPGA on these data

Further Reading & Coding

20

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://arxiv.org/abs/1812.08434
https://arxiv.org/pdf/2007.13681.pdf
https://github.com/jmduarte/JEDInet-code
https://zenodo.org/record/3602260#.X6ysrS9h2L8
https://github.com/vlimant/PUPPIML
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Dynamic Graph CNN for Learning on Point Clouds
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Fig. 1. Point cloud segmentation using the proposed neural network. Bo�om: schematic neural network architecture. Top: Structure of the feature
spaces produced at di�erent layers of the network, visualized as the distance from the red point to all the rest of the points (shown le�-to-right are the input
and layers 1-3; rightmost figure shows the resulting segmentation). Observe how the feature space structure in deeper layers captures semantically similar
structures such as wings, fuselage, or turbines, despite a large distance between them in the original input space.

Point clouds provide a �exible geometric representation suitable for count-
less applications in computer graphics; they also comprise the raw output
of most 3D data acquisition devices. While hand-designed features on point
clouds have long been proposed in graphics and vision, however, the recent
overwhelming success of convolutional neural networks (CNNs) for image
analysis suggests the value of adapting insight from CNN to the point cloud
world. Point clouds inherently lack topological information so designing
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a model to recover topology can enrich the representation power of point
clouds. To this end, we propose a new neural network module dubbed Edge-
Conv suitable for CNN-based high-level tasks on point clouds including
classi�cation and segmentation. EdgeConv acts on graphs dynamically com-
puted in each layer of the network. It is di�erentiable and can be plugged into
existing architectures. Compared to existing modules operating in extrinsic
space or treating each point independently, EdgeConv has several appealing
properties: It incorporates local neighborhood information; it can be stacked
applied to learn global shape properties; and in multi-layer systems a�nity
in feature space captures semantic characteristics over potentially long dis-
tances in the original embedding. We show the performance of our model
on standard benchmarks including ModelNet40, ShapeNetPart, and S3DIS.
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19 ๏Dynamic Graph CNN (DGCNN) is one 
kind of message-passing neural 
network 

๏It uses EdgeConv layers to perform 
point-cloud segmentation 

๏Segmentation is the process of 
clustering pixels in an image into 
objects 

๏EdgeConv was capable of extending 
semantic segmentation beyond 
nearby-pixel clustering 

๏the two wings of the airplane 
are associated to the same 
cluster, since they are found to 
be similar

EdgeConv
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๏EdgeConv is a typical message passing architecture, using 
fully-connected networks to learn edge representation (the 
h functions)

EdgeConv
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Figure 2. Left: An example of computing an edge feature, eij , from a point pair, xi and xj . In this example, h⇥() is instantiated using
a fully connected layer, and the learnable parameters are its associated weights and bias. Right: Visualize the EdgeConv operation. The
output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.

2. Related Work
Hand-Crafted Features Various tasks in geometric data
processing and analysis — including segmentation, clas-
sification, and matching — require some notion of local
similarity between shapes. Traditionally, this similarity is
established by constructing feature descriptors that capture
local geometric structure. Countless papers in computer vi-
sion and graphics propose local feature descriptors for point
clouds suitable for different problems and data structures. A
comprehensive overview of hand-designed point features is
out of the scope of this paper, but we refer the reader to
[51, 15, 4] for comprehensive discussion.

Broadly speaking, one can distinguish between extrin-
sic and intrinsic descriptors. Extrinsic descriptors usually
are derived from the coordinates of the shape in 3D space
and includes classical methods like shape context [3], spin
images [17], integral features [27], distance-based descrip-
tors [24], point feature histograms [39, 38], and normal his-
tograms [50], to name a few. Intrinsic descriptors treat the
3D shape as a manifold whose metric structure is discretized
as a mesh or graph; quantities expressed in terms of the met-
ric are by definition intrinsic and invariant to isometric de-
formation. Representatives of this class include spectral de-
scriptors such as global point signatures [37], the heat and
wave kernel signatures [48, 2], and variants [8]. Most re-
cently, several approaches wrap machine learning schemes
around standard descriptors [15, 42].

Learned Features. In computer vision, approaches rely-
ing on ‘hand-crafted’ features have reached a plateau in per-
formance on challenging image analysis problems like im-
age recognition. A breakthrough came with the use of con-
volutional neural networks (CNNs) [22, 21], leading to an
overwhelming trend to abandon hand-crafted features in fa-
vor of models that learn task-specific features from data.

A basic CNN architecture is the deep neural network,
which interleaves convolutional and pooling layers to ag-
gregate local information in images. This success of deep
learning for images suggests the value of adapting related

insight to geometric data like point clouds. Unlike images,
however, geometric data usually are not on an underlying
grid, requiring new definitions for building blocks like con-
volution and pooling.

Existing 3D deep learning methods can be split into
two classes. View-based and volumetric representations
exemplify techniques that try to “place” geometric data
onto a grid and apply existing deep learning algorithms
to the adapted structure. Other methods replace the stan-
dard building blocks of deep neural architectures with spe-
cial operations suitable for unstructured geometric data
[29, 6, 31, 34, 36]. We provide details about the closest
techniques to ours below.

View-based Methods View-based techniques represent a
3D object as a collection of 2D views, to which standard
CNNs used in image analysis can be applied. Typically,
a CNN is applied to each view and then the resulting fea-
tures are aggregated by a view pooling procedure [47].
View-based approaches are also good match for applica-
tions where the input comes from a 3D sensor and repre-
sented as a range image [53], in which case a single view
can be used.

Volumetric Methods Voxelization is a straightforward
way to convert unstructured geometric data to a regular
3D grid over which standard CNN operations can be ap-
plied [30, 54]. These volumetric representations are often
wasteful, since voxelization produces a sparsely-occupied
3D grid. Time and space complexity considerations limit
the resolution of the volumetric grids, yielding quantization
artifacts. Recent space partition methods like k-d trees [20]
or octrees [49] remedy some resolution issues but still rely
on subdivision of a bounding volume rather than local ge-
ometric structure. Finally, [35] studied a combination of
view-based and volumetric approaches for 3D shape classi-
fication.

3
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output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.
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sion and graphics propose local feature descriptors for point
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comprehensive overview of hand-designed point features is
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and includes classical methods like shape context [3], spin
images [17], integral features [27], distance-based descrip-
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tograms [50], to name a few. Intrinsic descriptors treat the
3D shape as a manifold whose metric structure is discretized
as a mesh or graph; quantities expressed in terms of the met-
ric are by definition intrinsic and invariant to isometric de-
formation. Representatives of this class include spectral de-
scriptors such as global point signatures [37], the heat and
wave kernel signatures [48, 2], and variants [8]. Most re-
cently, several approaches wrap machine learning schemes
around standard descriptors [15, 42].

Learned Features. In computer vision, approaches rely-
ing on ‘hand-crafted’ features have reached a plateau in per-
formance on challenging image analysis problems like im-
age recognition. A breakthrough came with the use of con-
volutional neural networks (CNNs) [22, 21], leading to an
overwhelming trend to abandon hand-crafted features in fa-
vor of models that learn task-specific features from data.

A basic CNN architecture is the deep neural network,
which interleaves convolutional and pooling layers to ag-
gregate local information in images. This success of deep
learning for images suggests the value of adapting related

insight to geometric data like point clouds. Unlike images,
however, geometric data usually are not on an underlying
grid, requiring new definitions for building blocks like con-
volution and pooling.

Existing 3D deep learning methods can be split into
two classes. View-based and volumetric representations
exemplify techniques that try to “place” geometric data
onto a grid and apply existing deep learning algorithms
to the adapted structure. Other methods replace the stan-
dard building blocks of deep neural architectures with spe-
cial operations suitable for unstructured geometric data
[29, 6, 31, 34, 36]. We provide details about the closest
techniques to ours below.

View-based Methods View-based techniques represent a
3D object as a collection of 2D views, to which standard
CNNs used in image analysis can be applied. Typically,
a CNN is applied to each view and then the resulting fea-
tures are aggregated by a view pooling procedure [47].
View-based approaches are also good match for applica-
tions where the input comes from a 3D sensor and repre-
sented as a range image [53], in which case a single view
can be used.

Volumetric Methods Voxelization is a straightforward
way to convert unstructured geometric data to a regular
3D grid over which standard CNN operations can be ap-
plied [30, 54]. These volumetric representations are often
wasteful, since voxelization produces a sparsely-occupied
3D grid. Time and space complexity considerations limit
the resolution of the volumetric grids, yielding quantization
artifacts. Recent space partition methods like k-d trees [20]
or octrees [49] remedy some resolution issues but still rely
on subdivision of a bounding volume rather than local ge-
ometric structure. Finally, [35] studied a combination of
view-based and volumetric approaches for 3D shape classi-
fication.
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๏But the actual model is much more complicated than that

EdgeConv
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1:4 • Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon

Fig. 3. Model architectures: The model architectures used for classification (top branch) and segmentation (bo�om branch). The classification model takes
as input n points, calculates an edge feature set of size k for each point at an EdgeConv layer, and aggregates features within each set to compute EdgeConv
responses for corresponding points. The output features of the last EdgeConv layer are aggregated globally to form an 1D global descriptor, which is used to
generate classification scores for c classes. The segmentation model extends the classification model by concatenating the 1D global descriptor and all the
EdgeConv outputs (serving as local descriptors) for each point. It outputs per-point classification scores for p semantic labels. �: concatenation. Point cloud
transform block: The point cloud transform block is designed to align an input point set to a canonical space by applying an estimated 3 ⇥ 3 matrix. To
estimate the 3 ⇥ 3 matrix, a tensor concatenating the coordinates of each point and the coordinate di�erences between its k neighboring points is used.
EdgeConv block: The EdgeConv block takes as input a tensor of shape n ⇥ f , computes edge features for each point by applying a multi-layer perceptron
(mlp) with the number of layer neurons defined as {a1, a2, ..., an }, and generates a tensor of shape n ⇥ an a�er pooling among neighboring edge features.

a connection to existing work, Non-local Neural Networks [Wang
et al. 2018a] explored similar ideas in the video recognition �eld,
and follow-up work by Xie et al. [2018] proposed using non-local
blocks to denoise feature maps to defend against adversarial attacks.

3.1 Edge Convolution
Consider an F -dimensional point cloud with n points, denoted by
X = {x1, . . . , xn } ✓ RF . In the simplest setting of F = 3, each point
contains 3D coordinates xi = (xi ,�i , zi ); it is also possible to include
additional coordinates representing color, surface normal, and so
on. In a deep neural network architecture, each subsequent layer
operates on the output of the previous layer, so more generally the
dimension F represents the feature dimensionality of a given layer.

We compute a directed graph G = (V, E) representing local point
cloud structure, where V = {1, . . . ,n} and E ✓ V ⇥ V are the
vertices and edges, respectively. In the simplest case, we construct
G as the k-nearest neighbor (k-NN) graph of X in RF . The graph
includes self-loop, meaning each node also points to itself. We de�ne
edge features as ei j = h�(xi , xj ), where h� : RF ⇥ RF ! RF 0

is a
nonlinear function with a set of learnable parameters �.

Finally, we de�ne the EdgeConv operation by applying a channel-
wise symmetric aggregation operation ⇤ (e.g.,

Õ
or max) on the

edge features associated with all the edges emanating from each

vertex. The output of EdgeConv at the i-th vertex is thus given by

x0i = ⇤
j :(i, j)2E

h�(xi , xj ). (1)

Making analogy to convolution along images, we regard xi as the
central pixel and {xj : (i, j) 2 E} as a patch around it (see Fig-
ure 2). Overall, given an F -dimensional point cloud with n points,
EdgeConv produces an F 0-dimensional point cloud with the same
number of points.
Choice of h and ⇤. The choice of the edge function and the ag-

gregation operation has a crucial in�uence on the properties of
EdgeConv. For example, when x1, . . . , xn represent image pixels
on a regular grid and the graph G has connectivity representing
patches of �xed size around each pixel, the choice �m · xj as the
edge function and sum as the aggregation operation yields standard
convolution:

x 0im =
’

j :(i, j)2E
�m · xj , (2)

Here, � = (�1, . . . ,�M ) encodes the weights ofM di�erent �lters.
Each �m has the same dimensionality as x, and · denotes the Eu-
clidean inner product.

A second choice of h is

h�(xi , xj ) = h�(xi ), (3)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

๏Each EdgeConv layer runs a message passing and creates an 
updated representation of the graph of points 

๏Similar to a CNN, but capable of processing unordered sets 
of points 

https://arxiv.org/abs/1801.07829


EdgeConv for Particle Physics

25

6 S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries

single particle passing the central part of the calorimeter
before showering. The second pion passes the first layers
as a minimally ionizing particle and showers in the cen-
tral part of the calorimeter. Even though the two showers
largely overlap, the GravNet network (shown here as an
example) is able to identify and separate the two showers
very well. The track within the calorimeter is well identi-
fied and reconstructed and the energy fractions properly
assigned, even in the parts where the two showers heav-
ily overlap. Similar performance can be observed with the
other investigated methods.

(a) Truth

(b) Reconstructed

Fig. 3: Comparison of true energy fractions and energy
fractions reconstructed by the GravNet model for two
charged pions with approx. 50GeV energy showering in
di↵erent parts of the calorimeter. Colours indicate the
fraction belonging to each of the showers. The size of the
markers scales with the square root of the energy deposit
in each sensor.

Quantitatively, the performance of the models is com-
pared using the mean loss (µL) on the test data set, as well

as the clustering response as defined in Equations 2 and 3.
For every event, we define one of the shower as the test
shower and the other overlapping shower as noise shower.
Performance characteristics are evaluated only for the test
shower and are quantified by the mean (µR) and variance
(�R) of the response in the test data set. In addition, we
define clustering accuracy (A) as the fraction of show-
ers with response between 0.7 and 1.3. Given that some
showers are not properly clustered, the response distribu-
tion has a small fraction of outliers that disturb its other-
wise rather Gaussian shape. Therefore, test showers with
response less than 0.2 and higher than 2.8 are removed,
resulting in the response kernel mean µ⇤

R and variance �⇤
R.

The reconstruction of hits with significant overlaps is par-
ticularly challenging. Therefore, we also evaluate the per-
formance of the models restricted to those sensors with
energy fractions between 0.2 and 0.8.

As listed in Table 2, the GravNet layer outperforms
the other approaches as far as the inclusive metrics are
concerned, including even the more resource-intensiveDG-
CNN model. The GarNet model is slightly worse than
the DGCNN model but still outperforms the binning ap-
proach as far as the reconstruction of individual shower
hit fractions is concerned, represented by the loss func-
tion. However, with respect to the clustering response, the
binning model outperforms the GarNet and DGCNN
model slightly. For the overlapping parts of the show-
ers, the graph based approaches outperform the binning
approach. The DGCNN and GravNet model perform
equally well, and the GarNet model lies in-between the
binning approach and GravNet.

Table 2: Mean and variance of loss, response, and response
within the Gaussian kernel as well as clustering accuracy.

Inclusive
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.191 0.017 1.083 0.183 1.046 0.057 0.867
DGCNN 0.174 0.012 1.082 0.179 1.045 0.052 0.881
GarNet 0.182 0.011 1.086 0.190 1.048 0.055 0.872
GravNet 0.172 0.012 1.077 0.173 1.042 0.049 0.886

Overlapping showers (20-80%)
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.163 0.0045 1.005 0.099 1.004 0.096 0.697
DGCNN 0.154 0.0046 1.004 0.090 1.002 0.087 0.728
GarNet 0.157 0.0048 1.005 0.095 1.004 0.092 0.714
GravNet 0.156 0.0047 1.004 0.091 1.003 0.088 0.721

One should notice that part of the incorrectly pre-
dicted events are actually correctly clustered events in
which the test shower is labelled as noise shower (shower
swapping). Since the labelling is irrelevant in a clustering
problem, this behavior is not a real ine�ciency of the al-
gorithm. We denote by s the fraction of events where this
behaviour is observed. In Table 3, we calculate the loss for
both choices and evaluate the performance parameters for
the assignment that minimises the loss. The binning model
shows the largest fraction of swapped showers. The di↵er-
ence in response between the best-performing GravNet

๏DGCNN fits very well particle 
reconstruction in High Energy 
Physics 

๏Particles seen as energy 
showers in calorimeters 

๏DGCNN can be trained to 
distinguish overlapping 
showers from different 
particles 

๏Success comes at some 
computational cost: 

๏15 sec/event on a CPU 

๏Lowered to 5 sec/event on GPU 
when using a batch of 100
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(a) Mean (b) Variance

(c) Mean (d) Variance

Fig. 4: Mean (left) and variance (right) of the test shower response as a function of the test shower energy for full
shower (top) and for overlapping shower (bottom), computed summing the true deposited energy. Swapping of the
showers is allowed here.

model and the GarNet model is enhanced, while the dif-
ference between theGravNet andDGCNNmodel scales
similarly, likely because of their similar general structure.

As shown in Fig. 4, all models exhibit a bias toward
larger energy values for low-energy incoming particles.
Contributing to this bias are edge e↵ects from training the
models to predict fractions within the bounds of 0 and
1 with an adapted mean-squared error loss. This choice
is creating an expectation value larger than 0 at a peak
value of 0 (and vice-versa at a fraction of 1), and therefore
pushing the prediction away from predicting exactly 0 or
1, leading to an underestimation at high energies, and an
overestimation at low energies. Since we aim for a relative
comparison of the models, a study of other loss functions
is left for future study. In both metrics, mean and vari-
ance, the GravNet model outperforms the other models
in the full range, and the GarNet model shows the worst
performance, albeit in a comparable range. The resource-
intensive DGCNN model lies in between GravNet and
GarNet. For fractions between 0.2 and 0.8, the edge ef-

fects become negligible, and the Figures confirm that the
graph based models outperform the binning method at all
test shower energies, as well as that the GravNet and
the DGCNN model show similar performance.

8 Resource requirements

In addition to the clustering performance, it is impor-
tant to take into account the computational resources de-
manded by each model during inference. The inference
time can have a significant impact on the applicability of
the network for reconstruction tasks, in particular for the
kind of real-time processing performed by the trigger sys-
tems of typical collider experiments. We evaluate the in-
ference time t and memory consumption m for the models
studied here on one NVIDIA GTX 1080 Ti GPU for batch
sizes of 1 and 100, denoted as (t1,m1) and (t100, m100),
respectively. The inference time is also evaluated on one
Intel Xeon E5-2650 CPU core (tCPU

10
) for a fixed batch size
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single particle passing the central part of the calorimeter
before showering. The second pion passes the first layers
as a minimally ionizing particle and showers in the cen-
tral part of the calorimeter. Even though the two showers
largely overlap, the GravNet network (shown here as an
example) is able to identify and separate the two showers
very well. The track within the calorimeter is well identi-
fied and reconstructed and the energy fractions properly
assigned, even in the parts where the two showers heav-
ily overlap. Similar performance can be observed with the
other investigated methods.

(a) Truth

(b) Reconstructed

Fig. 3: Comparison of true energy fractions and energy
fractions reconstructed by the GravNet model for two
charged pions with approx. 50GeV energy showering in
di↵erent parts of the calorimeter. Colours indicate the
fraction belonging to each of the showers. The size of the
markers scales with the square root of the energy deposit
in each sensor.

Quantitatively, the performance of the models is com-
pared using the mean loss (µL) on the test data set, as well

as the clustering response as defined in Equations 2 and 3.
For every event, we define one of the shower as the test
shower and the other overlapping shower as noise shower.
Performance characteristics are evaluated only for the test
shower and are quantified by the mean (µR) and variance
(�R) of the response in the test data set. In addition, we
define clustering accuracy (A) as the fraction of show-
ers with response between 0.7 and 1.3. Given that some
showers are not properly clustered, the response distribu-
tion has a small fraction of outliers that disturb its other-
wise rather Gaussian shape. Therefore, test showers with
response less than 0.2 and higher than 2.8 are removed,
resulting in the response kernel mean µ⇤

R and variance �⇤
R.

The reconstruction of hits with significant overlaps is par-
ticularly challenging. Therefore, we also evaluate the per-
formance of the models restricted to those sensors with
energy fractions between 0.2 and 0.8.

As listed in Table 2, the GravNet layer outperforms
the other approaches as far as the inclusive metrics are
concerned, including even the more resource-intensiveDG-
CNN model. The GarNet model is slightly worse than
the DGCNN model but still outperforms the binning ap-
proach as far as the reconstruction of individual shower
hit fractions is concerned, represented by the loss func-
tion. However, with respect to the clustering response, the
binning model outperforms the GarNet and DGCNN
model slightly. For the overlapping parts of the show-
ers, the graph based approaches outperform the binning
approach. The DGCNN and GravNet model perform
equally well, and the GarNet model lies in-between the
binning approach and GravNet.

Table 2: Mean and variance of loss, response, and response
within the Gaussian kernel as well as clustering accuracy.

Inclusive
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.191 0.017 1.083 0.183 1.046 0.057 0.867
DGCNN 0.174 0.012 1.082 0.179 1.045 0.052 0.881
GarNet 0.182 0.011 1.086 0.190 1.048 0.055 0.872
GravNet 0.172 0.012 1.077 0.173 1.042 0.049 0.886

Overlapping showers (20-80%)
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.163 0.0045 1.005 0.099 1.004 0.096 0.697
DGCNN 0.154 0.0046 1.004 0.090 1.002 0.087 0.728
GarNet 0.157 0.0048 1.005 0.095 1.004 0.092 0.714
GravNet 0.156 0.0047 1.004 0.091 1.003 0.088 0.721

One should notice that part of the incorrectly pre-
dicted events are actually correctly clustered events in
which the test shower is labelled as noise shower (shower
swapping). Since the labelling is irrelevant in a clustering
problem, this behavior is not a real ine�ciency of the al-
gorithm. We denote by s the fraction of events where this
behaviour is observed. In Table 3, we calculate the loss for
both choices and evaluate the performance parameters for
the assignment that minimises the loss. The binning model
shows the largest fraction of swapped showers. The di↵er-
ence in response between the best-performing GravNet
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Generalising CNN to point clouds
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The math
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๏The inputs X 

๏The weights W 

๏The Adjacency matrix



The Inputs
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๏Same as all other networks 

๏Each vertex (row) is represented as an array of 
features (columns)



The Weights

32

๏The weight matrix W is used on each vertex to create new 
function of the inputs x (encoding) 

๏If wij=1, the input representations is used directly in 
the message passing



The Adjacency Matrix

33

๏Embeds graph structure: says which vertex is connected to which.  

๏The value could be 1 (0 for no connection) or it could be a weight 

๏Could be used with attention mechanism: the fixed weights are replaced  
by learnable parameters. In training, the graph decides which 
connections are relevant



The Message Passing
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๏By performing a standard matrix product, one builds the 
message 

๏This is for one filter. One can have multiple filters, as 
for CNNs 



We will use GCNs for exercise
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๏Images of 64x64x1 pixels 

๏Class 1: a sample of circles in grey 
scale (one channel, pixels filled with 
value in [0,1]) 

๏Fill pixels with Gaus(0.9,0.1) 

๏Class 0: a noise sample, filled with 
G(m,0.1) (m =0.3 or 0.7) 

๏Take the 100 pixels closer to 1 

๏Represent the event as a (100,3) list, the 
three features being (iX, iY, GrayScale)



๏Graph Networks are a powerful tool to learn from sparse 
data sets 

๏extend CNN concept beyond the case of geometrical 
proximity -> learned representation  

๏allow to abstract from irregular geometry (molecules, 
particle-physics detectors, stars in a galaxy, …) 

๏allow to inject domain knowledge in the game (e.g., 
enforcing physics rules for message-passing functions 
[Newton’s law in N-body simulation] 

๏But can also be used to learn (how to simulate) physics

Summary
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Backup
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Gated Graph Neural 
Networks
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Figure 1. Depiction of the effect of CHS. The full event (left), the event after CHS is applied
(middle) and the Ground Truth (right) are shown. Particles from the LV are shown in orange (dark)
and those from pileup in blue (light).

we dub PUPPIML. In addition, a model based on fully-connected Neural Networks and one
based on Gated Recurrent Units (GRU) [5] are presented for comparison.

We take as starting point for our study the PileUp Per Particle Identification (PUPPI) [1]
algorithm. Unlike many other pileup-removal algorithms, PUPPI is designed to assign a
weight to each particle. The weight quantifies how likely it is that a particle might have
originated from the Leading Vertex and is computed using the quantity:

↵�
i = log

X

j2event
⇠ij ⇥⇥(�Rij < Rmin)⇥⇥(�Rij < R0) , (1.1)

where i is the label of the considered particle in the event and ⇠ij = pTj/�R�
ij . �Rij =p

��2 +�⌘2 is the distance between the i-th and j-th particle in the plane identified by
the pseudorapidity ⌘ and the azimuthal angle �. R0 = 0.3 defines a cone around the i-th
particle and Rmin = 0.02 removes the region surrounding the i-th particle. In Ref. [1], ↵1

i is
found to be the optimal metric to quantify the so-called PUPPI, weight, based on the per-
event ↵1

i distribution. When Charged Hadron Subtraction (CHS, see Section 2) is applied
upstream to PUPPI, the sum in Eq.(1.1) is performed over the charged particles from the
LV, as opposed to the full event.

2 Related work

Owing to the CMS [6] and ATLAS [7] vertex resolution, charged particles from pileup
can be accurately removed, based on their vertex information, in particular in the central
region. This technique, referred to as CHS, greatly simplifies the problem, as can be seen
in Figure 1. The main challenge becomes correcting for the neutral pileup contribution,
for which sufficient vertex information is typically unavailable. Early approaches, such as
the area-subtraction method [8–11] employed in LHC Run I (2009-2012) analyses, correct
the event based only on the characteristic per-event pileup energy density. While they help
in obtaining unbiased estimates of the jets four-momenta, they are affected by a serious
resolution loss with increasing number of pileup interactions, even when extended to jet

– 2 –

๏ At the LHC, parasitic 
collisions (pileup) 
happen simultaneously to 
your interesting one 
(hard-scattering 
collision) 

๏ They typically happen at 
~ same x and y, but at 
different z  

๏ Charged particles are 
tracked back to their 
origin and associated to 
the interesting collision 
or to a parasitic one 

๏ Neutrals cannot be 
tracked back
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Figure 1. Depiction of the effect of CHS. The full event (left), the event after CHS is applied
(middle) and the Ground Truth (right) are shown. Particles from the LV are shown in orange (dark)
and those from pileup in blue (light).

we dub PUPPIML. In addition, a model based on fully-connected Neural Networks and one
based on Gated Recurrent Units (GRU) [5] are presented for comparison.

We take as starting point for our study the PileUp Per Particle Identification (PUPPI) [1]
algorithm. Unlike many other pileup-removal algorithms, PUPPI is designed to assign a
weight to each particle. The weight quantifies how likely it is that a particle might have
originated from the Leading Vertex and is computed using the quantity:
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the pseudorapidity ⌘ and the azimuthal angle �. R0 = 0.3 defines a cone around the i-th
particle and Rmin = 0.02 removes the region surrounding the i-th particle. In Ref. [1], ↵1

i is
found to be the optimal metric to quantify the so-called PUPPI, weight, based on the per-
event ↵1

i distribution. When Charged Hadron Subtraction (CHS, see Section 2) is applied
upstream to PUPPI, the sum in Eq.(1.1) is performed over the charged particles from the
LV, as opposed to the full event.

2 Related work

Owing to the CMS [6] and ATLAS [7] vertex resolution, charged particles from pileup
can be accurately removed, based on their vertex information, in particular in the central
region. This technique, referred to as CHS, greatly simplifies the problem, as can be seen
in Figure 1. The main challenge becomes correcting for the neutral pileup contribution,
for which sufficient vertex information is typically unavailable. Early approaches, such as
the area-subtraction method [8–11] employed in LHC Run I (2009-2012) analyses, correct
the event based only on the characteristic per-event pileup energy density. While they help
in obtaining unbiased estimates of the jets four-momenta, they are affected by a serious
resolution loss with increasing number of pileup interactions, even when extended to jet

– 2 –

With PU No PUAfter removing PU from tracks

PU
HSC

๏We want to learn if a given neutral comes from PU of from the hard-scattering collision 

๏We look at the problem projecting the solid-angle particle distribution in a plane (we 
unroll the cylindrical detector into a rectangle) 

๏Each point is a particle (size represents the energy carried by each particle) 

๏We know the particle charge, plus some extra feature we might want to use (e.g., particle 
kind [electron, muon, etc.]) 

๏We have labels for charged particles, but not neutrals



๏We use Gated Graph Neural Network (GGNN), a special kind of message-passing 
architecture 

๏Start from a set of particles, each represented as a set of features h 

๏Build the graph 

๏Use a recurrent network (GRU) to “pass” messages in sequential steps and evolve 
the particle representation 

๏At each iteration, we connect to different neighbours (start with close-by, then 
go further)

Graph Networks for PU removal
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Fig. 2. Conceptual depiction of the GGNN model architecture. The event is pre-processed by linking local particles together,
after which it is fed to 3 GGNN layers with time-steps [2, 1, 1] and including a residual connection from the first to the third
layer. This is then passed, individually per graph node, to a fully-connected network that outputs a [0,1] pileup classification
score. Adam is used with a learning rate of 0.004 to minimize the binary cross-entropy. The output of the network is checked
to be a well-calibrated probability.

– The PUPPI weight associated to the particle: a number between 0 and 1 that can be related to the probability of
the particle being pileup.

– A flag set to 1 for charged particles from the LV, -1 for charged pileup particles and 0 for all neutral particles. This
flag provides a simple encoding for when CHS is used.

– A pileup flag indicating whether the particle belongs to the hard scattering or to any of the pileup vertices. This
information is used as the ground truth later on.

We assume units such that h̄ = c = 1. Furthermore, we store for each event the median pT per unit area in (⌘,�) for
all particles (⇢), for all charged particles alone (⇢C), and for all neutral particles alone (⇢N ).

4 Network architectures

PUPPI can be straightforwardly interpreted as a per particle classification algorithm. Under this point of view, tra-
ditional metrics such as the Receiver Operating Characteristic (ROC) curve (true positive rate against false positive
rate) or the accuracy (fraction of correctly classified particles) can be used. The choice of the shape variable ↵1 is then
driven by its discriminating power, with the underlying assumption that a better classification performance should
correlate with a better reconstruction of physics-motivated quantities which are relevant to study these data. For all
the investigated network architectures, we generalize this approach to multiple shape variables, indicated from now
on as features. We feed as input to our networks all the particles, with all the features discussed in Sec. 3 except for
the pileup flag, which we use as the training ground truth. The global features are concatenated to each particle’s
individual features. An generalization of PUPPI by mean of ML techniques is already discussed in Ref. [1], where it is
asserted that training a Boosted Decision Tree modestly improves performance when compared to the use of ↵1 as
discriminating quantity.

Our most straightforward model makes use of two stacked fully-connected hidden layers and a final single-neuron
layer with a sigmoid activation function. This network is trained, as all the other models, to minimize a binary
cross-entropy loss function using the Adam optimizer [32]. This model stands out for its simplicity, as it operates on
each particle completely independently of the others, but su↵ers from a clear issue: while the input includes global
(⇢, ⇢C , ⇢N ) and local (↵C

i ,↵
F
i ) features, the network has no mechanism by which it could learn these or similar features.

Extending the network architecture beyond a simple per-particle processing, one could overcome this limitation.
To this purpose, di↵erent network architectures can be chosen. Reference [24] describes an approach based on CNNs.
Motivated by the arguments described in Sec. 2, we complement the results of Ref. [24] by studying GRUs and GGNNs.
Both these architectures take as input the full list of particles in the event, outputting a per-particle label.

The GRU is a recurrent neural network architecture that sequentially processes each item of an input list, based
on the outcome of previous-item processing. While making no assumption on the underlying detector geometry, the
GRU architecture implies the use of a ranking principle to order the items in the input list. In our study, the inout
list contains the particles in the event, which are ordered by their pT value. This is one of the many arbitrary choices
that one could make. In the network, we make use of a bidirectional GRU layer, i.e., we consider both increasing- and
decreasing-pT ordering. The output of this layer is concatenated to each particle’s features. We show that this approach
does not improve the classification performance with respect to DNNs and traditional methods. This is mainly due by
the fact that GRUs require a global ordering criterion, while the information determining if a given particles belongs
to the LV or originates from pileuphas mainly to due with the particle’s local neighborhood.
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Building the graph
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๏Start with one particle (the red one) 

๏Connect it to the closest ones (R<R0) with one kind of edge 

๏Connect it to the next-to-closest ones with a different 
kind of edge 

๏… 

๏Each edge comes with a message

Messages

A = Adjacency matrix, a 
learnable matrix, 

different for different 
kinds of edges

features of 
the j-th vertex

Gathered 
message



๏The procedure is repeated T times using a GRU with n 
steps

Multiple message passing
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Done 3 times (for 3 GRU layers)
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Fig. 2. Conceptual depiction of the GGNN model architecture. The event is pre-processed by linking local particles together,
after which it is fed to 3 GGNN layers with time-steps [2, 1, 1] and including a residual connection from the first to the third
layer. This is then passed, individually per graph node, to a fully-connected network that outputs a [0,1] pileup classification
score. Adam is used with a learning rate of 0.004 to minimize the binary cross-entropy. The output of the network is checked
to be a well-calibrated probability.

– The PUPPI weight associated to the particle: a number between 0 and 1 that can be related to the probability of
the particle being pileup.

– A flag set to 1 for charged particles from the LV, -1 for charged pileup particles and 0 for all neutral particles. This
flag provides a simple encoding for when CHS is used.

– A pileup flag indicating whether the particle belongs to the hard scattering or to any of the pileup vertices. This
information is used as the ground truth later on.

We assume units such that h̄ = c = 1. Furthermore, we store for each event the median pT per unit area in (⌘,�) for
all particles (⇢), for all charged particles alone (⇢C), and for all neutral particles alone (⇢N ).

4 Network architectures

PUPPI can be straightforwardly interpreted as a per particle classification algorithm. Under this point of view, tra-
ditional metrics such as the Receiver Operating Characteristic (ROC) curve (true positive rate against false positive
rate) or the accuracy (fraction of correctly classified particles) can be used. The choice of the shape variable ↵1 is then
driven by its discriminating power, with the underlying assumption that a better classification performance should
correlate with a better reconstruction of physics-motivated quantities which are relevant to study these data. For all
the investigated network architectures, we generalize this approach to multiple shape variables, indicated from now
on as features. We feed as input to our networks all the particles, with all the features discussed in Sec. 3 except for
the pileup flag, which we use as the training ground truth. The global features are concatenated to each particle’s
individual features. An generalization of PUPPI by mean of ML techniques is already discussed in Ref. [1], where it is
asserted that training a Boosted Decision Tree modestly improves performance when compared to the use of ↵1 as
discriminating quantity.

Our most straightforward model makes use of two stacked fully-connected hidden layers and a final single-neuron
layer with a sigmoid activation function. This network is trained, as all the other models, to minimize a binary
cross-entropy loss function using the Adam optimizer [32]. This model stands out for its simplicity, as it operates on
each particle completely independently of the others, but su↵ers from a clear issue: while the input includes global
(⇢, ⇢C , ⇢N ) and local (↵C

i ,↵
F
i ) features, the network has no mechanism by which it could learn these or similar features.

Extending the network architecture beyond a simple per-particle processing, one could overcome this limitation.
To this purpose, di↵erent network architectures can be chosen. Reference [24] describes an approach based on CNNs.
Motivated by the arguments described in Sec. 2, we complement the results of Ref. [24] by studying GRUs and GGNNs.
Both these architectures take as input the full list of particles in the event, outputting a per-particle label.

The GRU is a recurrent neural network architecture that sequentially processes each item of an input list, based
on the outcome of previous-item processing. While making no assumption on the underlying detector geometry, the
GRU architecture implies the use of a ranking principle to order the items in the input list. In our study, the inout
list contains the particles in the event, which are ordered by their pT value. This is one of the many arbitrary choices
that one could make. In the network, we make use of a bidirectional GRU layer, i.e., we consider both increasing- and
decreasing-pT ordering. The output of this layer is concatenated to each particle’s features. We show that this approach
does not improve the classification performance with respect to DNNs and traditional methods. This is mainly due by
the fact that GRUs require a global ordering criterion, while the information determining if a given particles belongs
to the LV or originates from pileuphas mainly to due with the particle’s local neighborhood.

๏The representation created by each layer is passed to the next 

๏A ResNet-like skip connection is implemented (input -> last layer) 

๏The per-particle outcome set of features (function of the features 
of the connected particles) is used to train a dense classifier: 
PU vs interesting particle?



๏Improve state-of-the-art 
algorithms substantially 

๏Little dependence of 
algorithm tuning on pileup 
conditions 

๏Small/No performance loss 
with average number of PU 
collisions 

๏Outperforms alternative 
particle-based architectures 
(DNNN, simple GRU)
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nPU 20 (CHS) 80 (CHS) 140 (CHS) 80 (No CHS)
pT 92.3% 92.3% 92.5% 64.9%

PUPPI weight 94.1% 93.9% 94.4% 65.1%
Fully-connected 95.0% 94.8% 94.8% 68.5%

GRU 94.8% 94.8% 94.7% 68.8%
GGNN 96.1% 96.1% 96.0% 70.1%

Table 1. Area under the curve for the different discriminating variables and models. The best
results are highlighted in bold.

Figure 3. Receiver Operating Characteristic (ROC) curve for our proposed features and models
(zoomed in). The PUPPI weight and pT are included as an indicator of the expected performance
of PUPPI and SoftKiller respectively. GGNN outperform other proposed architectures. Since CHS
is applied and assumed perfect, the curves do not cross the points (0,0) and (1,1) (not shown here).

results, we only consider the performance of our GGNN and the state of the art algorithms
from here on. We tune R1 = 0.3 and N0 = 5 to maximize the area under the curve. We
fix the particle cut to pcut = 0.4 (nPU = 20) and pcut = 0.35 (nPU = 80, nPU = 140)
so as to minimize the offset between the reconstructed and the LV observables. We find
that minimizing the offset for one observable also approximately minimizes the offset for
all other observables.

Figure 4 shows the effect of running our proposed approach on an event at nPU = 20.
The reconstructed event is shown on the bottom left, with particles represented as dots sized
according to their pT . Dots are colored as orange (dark) if they come from the LV and blue
(light) if they originate from pileup interactions. The event is also shown as reconstructed
by PUPPI (bottom left) and by SoftKiller (bottom center). Moreover, we show the ground
truth on the top left and the unprocessed event on the top right. Similarly, Fig. 5 shows
the effect of the algorithms, using the same plotting conventions, on three jets at nPU = 80.
We note qualitatively that PUPPIML improves on the state-of-the-art approaches, removing
some low-pT pileup particles close to the jet that PUPPI does not (dotted ellipses), and
removing some high-pT particles far away from the jet that SoftKiller does not (dashed
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Figure 5. Depiction of the effect of running the different pileup mitigation algorithms on three
jets at nPU = 80. Particles from the Leading Vertex are shown in orange (dark) and pileup particles
are shown in blue (light). From left to right for each jet (i.e., each row), we show the ground truth,
the jet contaminated by the parasitic interactions, and the reconstructed jet after running PUPPI,
SoftKiller and our approach, PUPPIML. PUPPIML seems to improve on PUPPI by eliminating some
of the low pT particles close to jets (dotted ellipses) and on SoftKiller by eliminating some of the
high pT pileup particles that are far away from jets (dashed ellipses). All algorithms are run after
applying CHS.

Figure 6. Jet pT resolution as a function of nPU for jets in the range 100 < pT < 150 GeV (left)
and as a function of the jet transverse momentum at nPU = 140 (right) when CHS is applied.

⇠ 15% in resolution at nPU = 20, ⇠ 25% at nPU = 80, and ⇠ 30% at nPU = 140.
Finally, in order to study the reconstruction of jet shapes, we consider the resolution
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Distance-Weighted 
Graph Networks



๏When building a graph of N vertices, 
number of edges (and number of 
computing operations) scale with N2 

๏This might clash with computing 
resource limitations (both for training 
and inference) 

๏Certainly, this is the case at the LHC 

๏real-time event selection runs in 
short time 

๏most of the selection runs as 
electronic circuit on electronic 
board 

๏Gravnet & Garnet: resource friendly 
graph architectures 

Reducing memory consumption
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1) Start with a 
graph in geometric 
space. Each vertex 
feature vector FIN 
is characterized 
by coordinates and 
features

2) Each FIN is 
processed by a linear 
network, returning 
two outputs: a 
coordinate vector s & 
a learned 
representation FLR

3) With s and 
FLR we build the 
new graph in 
the learned 
space

https://arxiv.org/abs/1902.07987


GravNet
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4) Unlike DGCNN, 
the message 
function is a 
potential function 
(we use  where 
d is the Euclidean 
distance in 
learned space)

e−d2

5) Message 
aggregated with 
different 
functions (Max, 
Average,…)

6) Final 
representation 
is learned from 
the engineered 
features and 
the original 
ones

https://arxiv.org/abs/1902.07987
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1) Start with a 
graph in geometric 
space. Each vertex 
feature vector FIN 
is characterized 
by coordinates and 
features

2) Each FIN is 
processed by a linear 
network, returning two 
outputs: a vector of 
distances s & a 
learned representation 
FLR

3) s are the 
distances 
from Ns 
aggregators

di2

di1

dj2
dj1

https://arxiv.org/pdf/2008.03601.pdf

https://arxiv.org/abs/1902.07987

(simplified) GarNet
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4) Fwd distance- 
weighted messages 
from vertices are 
gathered at 
aggregators (weight 

 where d is 
Euclidean distance 
in learned space) 

Wab = e−dab

5) Bkw distance- 
weighted messages 
from aggregators 
are gathered at 
vertices (weight 

) Wab = e−dab

6) Final 
representation 
is learned from 
the engineered 
features and 
the original 
onesFigure 1: Processing flow of the modified GarNet algorithm: (a) The input features (gj

v) of each vertex are
processed by a linear network, that returns a new set of features (f i

v) and its distance from the S aggregators
(dav). (b) A graph is built in the learned space, using the dav distances. (c) A message is gathered by each
aggregator, as a weighted sum across the vertices of f

i
v, with Wav = exp(≠d

2
av) as weights. (d) A message is

from each aggregator (f̃ i
av) is passed back to each vertex, with the same Wav weight. (e) The aggregated

outputs of each vertex are given as input to a neural network, which returns the learned representation.

with linear activation functions, so one can write them as linear transformations
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model using the G���N�� layers requires about 50% less. The G��N�� model provides the best
compromise of memory consumption with respect to performance. In terms of inference time, the
binning model is the fastest and the graph-based models show a similar behaviour for small batch
sizes on a GPU. The G��N�� and the G���N�� model benefit from parallelizing over a larger
batch. In particular, the G��N�� model is mostly sequential, which also explains the outstanding
performance on a single CPU core, with almost a factor of 10 shorter inference time compared to
the DGCNN model.
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Figure 5: Comparison of inference time for the network architectures described in the text, evaluated
on CPUs and GPUs with di�erent choices of batch size. The shaded area represents the +1�
statistical uncertainty band.

9 Conclusions

In this work, we introduced the G��N�� and G���N�� layers, which are distance-weighted graph
networks capable of learning irregular patterns of sparse data, such as the detector hits in a particle
physics detector with realistic geometry. Using as a benchmark problem the hit clustering in a
highly granular calorimeter, we show how these network architectures o�er a good compromise
between clustering performance and computational resource needs, when compared to CNN-based
and other graph-based networks. In the specific case considered here, the performance of the
G��N�� and G���N�� models are comparable to the CNN and graph baselines. On the other
hand, the simulated calorimeter in the benchmark study is only slightly irregular and can still be
represented by an almost regular array. In more realistic applications, e.g. with the hexagonal
sensors and the non-projective geometry of the future HGCAL detector of CMS, the di�erence
in performance between the graph-based approaches and the CNN-based approaches is expected
to increase further, making the G��N�� approach a very e�cient candidate for fast and accurate
inference and the G���N�� approach a good candidate for high-performance reconstruction with
less resource requirements and better performance than the DGCNN model.
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๏Good performance 
achieved, 
comparable to DGCNN 
and traditional 
approaches  

๏Using a potential 
(V(d) ) to weight 
up the near 
neighbours allows 
to keep memory 
footprint under 
control (with 
respect to other 
graph approaches)

S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries 7

(a) Mean (b) Variance

(c) Mean (d) Variance

Fig. 4: Mean (left) and variance (right) of the test shower response as a function of the test shower energy for full
shower (top) and for overlapping shower (bottom), computed summing the true deposited energy. Swapping of the
showers is allowed here.

model and the GarNet model is enhanced, while the dif-
ference between theGravNet andDGCNNmodel scales
similarly, likely because of their similar general structure.

As shown in Fig. 4, all models exhibit a bias toward
larger energy values for low-energy incoming particles.
Contributing to this bias are edge e↵ects from training the
models to predict fractions within the bounds of 0 and
1 with an adapted mean-squared error loss. This choice
is creating an expectation value larger than 0 at a peak
value of 0 (and vice-versa at a fraction of 1), and therefore
pushing the prediction away from predicting exactly 0 or
1, leading to an underestimation at high energies, and an
overestimation at low energies. Since we aim for a relative
comparison of the models, a study of other loss functions
is left for future study. In both metrics, mean and vari-
ance, the GravNet model outperforms the other models
in the full range, and the GarNet model shows the worst
performance, albeit in a comparable range. The resource-
intensive DGCNN model lies in between GravNet and
GarNet. For fractions between 0.2 and 0.8, the edge ef-

fects become negligible, and the Figures confirm that the
graph based models outperform the binning method at all
test shower energies, as well as that the GravNet and
the DGCNN model show similar performance.

8 Resource requirements

In addition to the clustering performance, it is impor-
tant to take into account the computational resources de-
manded by each model during inference. The inference
time can have a significant impact on the applicability of
the network for reconstruction tasks, in particular for the
kind of real-time processing performed by the trigger sys-
tems of typical collider experiments. We evaluate the in-
ference time t and memory consumption m for the models
studied here on one NVIDIA GTX 1080 Ti GPU for batch
sizes of 1 and 100, denoted as (t1,m1) and (t100, m100),
respectively. The inference time is also evaluated on one
Intel Xeon E5-2650 CPU core (tCPU

10
) for a fixed batch size
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๏INs process a list of 
No x P inputs in pairs, 
through Receiving and 
Sending matrices  

๏The effect of the 
interaction is learned 
by fR and combined with 
the input to learn 
(through fo) a post-
interaction 
representation 

๏The procedure can then 
be iterated to produce  
further steps i the 
interactions
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Efficient NN design: compression
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CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

NO: # of constituents

P:   # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

𝟇C, 𝒇O , 𝒇R 
parameterized as 
neural networks
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Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.
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Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices

7



Figure 4. Distributions of the jet constituent kinematic features described in the text.

O3

O1 O2E1

E2 E3

E4

E5 E6

Figure 5. An example graph with three fully connected vertices and the corresponding six edges.

case of a three-vertex graph. The vertices and edges are labeled for practical reasons, but
the network architecture ensures that the labeling convention plays no role in creating the
new representation.

Once the graph is built, a receiving matrix (RR), and a sending matrix (RS) are defined.
Both matrices have dimensions NO⇥NE . The element (RR)ij is set to 1 when the i

th vertex
receives the j

th edge and is 0 otherwise. Similarly, the element (RS)ij is set to 1 when the
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

Figure 6. A flowchart illustrating the interaction network scheme.

i
th vertex sends the j

th edge and is 0 otherwise. In the case of the graph of Fig. 5, the two
matrices take the form:

RR =

0

BB@

E1 E2 E3 E4 E5 E6

O1 0 0 0 1 1 0

O2 1 0 0 0 0 1

O3 0 1 1 0 0 0
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O1 1 1 0 0 0 0

O2 0 0 1 1 0 0

O3 0 0 0 0 1 1

1

CCA. (4.2)

The input graph is represented by a matrix I. Each column of the matrix corresponds
to one of the graph vertices (the jet particles in our case), while the rows correspond to
the P features used to represent each vertex (the 16 features shown in Fig. 4 in our case).
Therefore, the I matrix has dimensions P ⇥ NO.

The I matrix is processed by the IN in a series of steps, represented in Fig. 6. The I

matrix is multiplied by the RR and RS matrices and the two resulting matrices are then

– 7 –

๏INs process a list of 
No x P inputs in pairs, 
through Receiving and 
Sending matrices  

๏The effect of the 
interaction is learned 
by fR and combined with 
the input to learn 
(through fo) a post-
interaction 
representation 

๏The procedure can then 
be iterated to produce  
further steps i the 
interactions

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

NO: # of constituents

P:   # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

"C, !O , !R 

parameterized as 
neural networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

Figure 6. A flowchart illustrating the interaction network scheme.
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The input graph is represented by a matrix I. Each column of the matrix corresponds
to one of the graph vertices (the jet particles in our case), while the rows correspond to
the P features used to represent each vertex (the 16 features shown in Fig. 4 in our case).
Therefore, the I matrix has dimensions P ⇥ NO.

The I matrix is processed by the IN in a series of steps, represented in Fig. 6. The I

matrix is multiplied by the RR and RS matrices and the two resulting matrices are then
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.
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Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices
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๏You have a jet at LHC: spray of 
hadrons coming from a “shower” 
initiated by a fundamental 
particle of some kind (quark, 
gluon, W/Z/H bosons, top quark) 

๏You have a set of jet features 
whose distribution depends on the 
nature of the initial particle 

๏You can train a network to start 
from the values of these 
quantities and guess the nature 
of your jet 

๏To do this you need a sample for 
which you know the answer 

Example: jet tagging

58

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.
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Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices
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Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.
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