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@ Learning from Graph: an example

@® Imagine a concrete example: given a social-media user,
who will she vote for at the next elections? ‘

‘

® The graph here comes from social-media connections

® The features are what we know for a given user (gender
age, education, etc.)

® We want to gather i1nformation on someone from the

social network of that person

@ we might know who some of her connections voted for
@We will use NNs to model the influence (message passed)

of each user on her connection and learn from data

which are the relevant connections. We are engineering

features

@A final classifier will give us the answer we want

® You might become president with this + target pressure Europesn
(ads, fake news, etc.) ejrc Council
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@ Learning from Graph: an example

DON'T DO IT!!




Graph MNetworks

® Graphs Nets are architectures based on
an abstract representation of a given
dataset

® Each example 1n a dataset 1is
represented as a set of vertices

® Each vertex 1s embedded 1n the
graph as a vector of features
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Graph Metworks

® Graphs Nets are architectures based on
an abstract representation of a given
dataset

® Each example 1n a dataset 1s
represented as a set of vertices

@ Each vertex 1s embedded 1n the
graph as a vector of features

@ Vertices are connected through
11nks (edges)
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Graph Metworks

® Graphs Nets are architectures based on
an abstract representation of a given
dataset

Ms_p = 8(f3»f2)

® Each example 1n a dataset 1s
represented as a set of vertices
_ _ My_,n = 8(?4»1?2)
® Each vertex 1s embedded 1n the
graph as a vector of features m = a(FFo)

® Vertices are connected through
l1nks (edges)

Ms_,p = 8(?5»]?2)

: 2 =8(fer fo)
® Messages are passed through 11nks -2 = 8Ue 2

and aggregated on the vertices
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Graph MNetworks

® Graphs Nets are architectures based on

an abstract representation of a given V3 =305 05 M6 3) Q
dataset
® Each example 1n a dataset 1s O

represented as a set of vertices q o

vi=f1my ..., Me_, 1) Vy=Jam_y,. .., Mg, 4)

® Each vertex 1s embedded 1n the Q Q

graph as a vector of features q

Vo, = fo(my_,..., Me_,»)

® Vertices are connected through
l1nks (edges)

® Messages are passed through 11nks Q
and aggregated on the vertices )
Vé =f§(m1_>5 ..... m6_>5)
@ A new representation of each node Q
1S created, based on the
information gathered across the Vo = [ msg) Curopenn
graph . https://arxiv.org/pdf/1704.01212.pdf er G| coma
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® The task-solving step can
happen on each vertex (1s this
a real particle or noise?) or
across the graph (i1s this a b-
jet?)

@ Usually, this 1s done with a
DNN taking

® the 1nitial features f;

® the learned representation
i’

® [optional] some ground-truth
label (for classifiers)
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...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a
new representation of each
vertex

@ You could start from
coordinates 1n real space
+ some feature

@ Bu1ld function of them

@ Bu1ld functions of
functions of them

@At each step, you 1mprove
knowledge on your vertex V
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...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a
new representation of each
vertex

@ You could start from
coordinates 1n real space
+ some feature

@ Bu1ld function of them

@ Bu1ld functions of
functions of them

@At each step, you 1mprove
knowledge on your vertex V
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...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a ®
new representation of each
vertex

@ You could start from
coordinates 1n real space
+ some feature

@ Bu1ld function of them

@ Bu1ld functions of
functions of them ®

@At each step, you 1mprove
knowledge on your vertex V
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...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a
new representation of each
vertex

@ You could start from
coordinates 1n real space
+ some feature

@ Bu1ld function of them

@ Bu1ld functions of
functions of them

@At each step, you 1mprove
knowledge on your vertex V
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...oNd repeat

® Once message 1s passed,
aggregated at each vertex V
and processed, 1t creates a
new representation of each
vertex

@ You could start from O
coordinates 1n real space ‘a
+ some feature ©
O
® Build function of them v

@ Bu1ld functions of o
functions of them ®

@At each step, you 1mprove
knowledge on your vertex V
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LJith equations...

® Your message at i1teration t 1s some function M of
the sending and receiving features, plus some vertex

features (e.g., business relation vs friendship 1n h‘f
social media) O
o<,
[
hw

M(hy, h,,, e,

® The message carried to a vertex V 1s aggregated by

some function (typically sum, but also Max, Min,
etc.)

mit =Y MR Re,,
weG(v)
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® The state of vertex V 1s updated by some function U
of the current state and the gathered message

h‘€+l — Ut(h\ia mt+1)

Vv

@After T 1terations, the last representations of the
graph vertices are used to derive the final output
answering the question asked (classification,
regression, etc.), typically through a NN

=R |veG
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Learning Message

@ Typically, the M, U, and R functions are learned from data
® Expressed as neural networks (fully connected NNs, recurrent NNs, etc.)

® Which networks to use depends on the specific problem, as much as the
graph-building rules

@ But you could 1nject domain knowledge 1n the game

® You might know that SOME message 1s carried by some specific functions
(e.,g., Newton’s low for N-body system simulation)

® You could then use analytic functions for some message
® You could still use a learned function for other messages

® The trick 1s dealing with differentiable functions not to spoil your back
propagation

® Graph networks become a tool for probabilistic programming Research
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([ little bt of History

@ (1n this millenium) Graph
networks started (as often
1t 1s the case) with a
Yann LeCun et al. paper

® They tried to generalise
CNNs beyond the regular-
array dataset paradigm

® They replaced the
translation-invariant
kernel structure of CNNs -
with hierarchical
clustering

https://arxiv.org/abs/1312.6203
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@) A little bit of History
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® The 1dea of message passing can be
tracked to a '15 paper by Duvenaud et al.

® The paper 1ntroduces “a convolutional
neural network that operates directly on
graphs”

ANEE VAN VA A"

X

n 1 1fferen 1T look
® Language .S d : © .e t, but you ook at Algorithm 2 Neural graph fingerprints
the algorithm 1t 1s pretty much what we , , .
discussed (for speci fic network 1: Input: molecule, radius R, hidden weights
architecture choices) H; ...H3, output weights W7 ... Wg

2: Initialize: fingerprint vector f < Og
3: for each atom a in molecule
Fragments most O iy O
activated by MH x( jH 4. r, < g(a) > lookup atom features
pro-solubility
feature ° o \ 5:for L=1to R > for each layer
6: for each atom a in molecule
Fragments most 6 7 r'r...ry = neigthI'S(a)
aniosolabiiy 8.8 Od%g 8: A A > sum
feature .
UaW, 9: r, < o(vH;) > smooth function
Figurel4: E;(amilnin% ﬁl}fgerprints (ZEUIE]IZG}? fgr. p1r§1dic:)tin§f1 .scﬁubiliiy. EhO\thdhjgcfre arte freptresentaft‘tti}\;e 10‘ 1 < SOf tIl:laX(ra WL) > Sp ar Slfy
examples of molecular fragments (highlighted in blue) which most activate different features of the o
ﬁnge.rl]);).rint. Top row: Th% feature nglostg predictive of solubility. Bottom row: The feature most 1 1 f — f + 1 > add tO ﬁngerprlnt
precictive ofinsolubiliy 12: Return: real-valued vector f

https://arxiv.org/pdf/1509.09292.pdf



https://arxiv.org/pdf/1509.09292.pdf

CE/RW
\\_/

Further Reading & Coding

@A few recent reviews that could guide you through the many
applications and networks

@A nice BLOG article on GNNs

@ Another nice BLOG article on GNNs

@A _generic review

@A particle-physics specific one

@A few GitHub entries

@ JEDI-net Interaction Networks for jet tagging on these data

® PUPPIML: GGNN for pileup subtraction

@®A small GarNet example that fits an FPGA on these data

=0


https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://arxiv.org/abs/1812.08434
https://arxiv.org/pdf/2007.13681.pdf
https://github.com/jmduarte/JEDInet-code
https://zenodo.org/record/3602260#.X6ysrS9h2L8
https://github.com/vlimant/PUPPIML
https://zenodo.org/record/3992780#.X6ysJC9h2L9
https://zenodo.org/record/3888910#.X6ytBi9h2L8
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EdgeConv

® Dynamic Graph CNN (DGCNN) 1s one S—
kind of message-passing neural
network

@ It uses EdgeConv layers to perform
point-cloud segmentation

® Segmentation 1s the process of
clustering pixels 1n an 1mage i1nto
objects

® EdgeConv was capable of extending
semantic segmentation beyond
nearby-pixel clustering

@ the two wings of the airplane
are associated to the same
cluster, since they are found to
be similar

European
Research
Council
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https://arxiv.org/abs/1801.07829

EdgeConv

® EdgeConv 1s a typical message passing architecture, using
ful ly-connected networks to learn edge representation (the
h functions)

> https://arxiv.org/abs/1801.07829
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EdgeConv

® But the actual model 1s much more complicated than that

. spatial
. transform

point cloud
nx 3
nx3

— ¢ mip{64,64} i

mip {64} _’

EdgeConv

..................................

n x 64

_’ mip {64}

n x 64

EdgeConv
mlp {64}

n x 64

EdgeConv
— mip{128}

n x 64

EdgeConv

----------------------------------

| —

| mip {64, 64}

n x 64

EdgeConv
mlip {64}

n x 64

Y mip {1024}
_.@ -
Max
pooling

1024

c v
oo
(0 0) v "5 o)
Y mip {1024} | < | mip {512, 265, c} S o
g —>€B > g »lO | = @
x Max - g 5
= pooling © ..g-
(&)
o
categorical
vector
mip {64} S
= mip =
repeating | 5 (256, 256, 128,p) | & | ©
— T2 D 15| 8
X A = =
- o
wn

output scores

@® Each EdgeConv layer runs a message passing and creates an
updated representation of the graph of points

@ Similar to a CNN, but capable of processing unordered sets

of points
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EageConv for Particle Physics

® DGCNN fits very well particle
reconstruction 1n High Energy

Physics , I
AR S L TR RO
® Particles seen as energy (Ve s et T e ;8°§
. . VYA "OO.Q.O‘.:.. ve @ *
showers in calorimeters ST A PR T S
4.t I Lk >
- ii"“i:;l':a o/ —30
® DGCNN can be trained to .;: b 4 .f : 100
. . . . ’ > o —°
distinguish ove_r7app7ng re e :. “°p
showers from different 7 ’!; *. g . 00
particles / *o/ 0
o 2. %%
4 ) 50
® Success comes at some ¢ To il , &
computational cost: P oo/ ;§
- ~50
@® 15 sec/event on a CPU
00 ~100
Z(mm 1250
) 1500
® Lowered to 5 sec/event on GPU 1750 L | saeoen
when using a batch of 100 iare| e
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EageConv for Particle Physics

® DGCNN fits very well particle
reconstruction in High Energy v Mean Reco/True
Phys -i CS © Energy Ratio
£1.01-
g
® Particles seen as energy 2 100
showers 1n calorimeters %
0.99-
@® DGCNN can be trained to | | | | | | |
. . . . 10 20 30 40 50 60 70
distinguish overlapping Test shower energy (GeV)
showers from different 0.13-
particles 0.12- Variance Reco/True

Energy Ratio

©
=
[

® Success comes at some
computational cost:

Response (variance)
o
=
o

0.091
® 15 sec/event on a CPU
0.081
® Lowered to 5 sec/event on GPU . . . . . . |
. 10 20 30 40 50 60 70 LRSS European
when using a batch of 100 Test shower energy (GeV) are e
26 25
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Convolutional Graph
MNeural Networks =
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Generalising CMM to pouint clouds

How Graph Convolutions work
CNN on image

711~ - Image
class label

%

Graph convolution

_OH
: OH
HO Y Y
-
\N/\
H

Chemical
property

Convolution “kernel” depends on Graph structure
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0 a2 ... Qain r21 T22 X233 ... I2f W11 W12 Wic
W21 W22 W2c
a1 0 a2
AX W = " .
Anl An2 0 w1 Wf2 ... Wee
* \—\’—/
nxn adjacency : Ln2 fXxc (feature weightXchannels)

\—/—/
nX f (nodesX features)

@ The 1nputs X

® The weights W

® The Adjacency matrix erc s

30



The Inputs

Consider a graph with n nodes, each containing f features.

21 L22 L23 ... X2f

. Ln?2 . . . |
#
nX f (nodesX features)

@ Same as all other networks

@ Each vertex (row) 1s represented as an array of

features (columns)
HIGTC| comn
=]




T he UJelghts

Consider a graph with n nodes, each containing f features.

w11 W32 Wic
W21 W22 W2
wfr Wf2 ... Wee

fXxc (feature weightXchannels)

® The weight matrix W 1s used on each vertex to create new
function of the 1nputs x (encoding)

@ If wij=1, the 7nput representations 1s used di rect7y 7n
the message passing | e

32




Ol The Adjacency Matr] i

Consider a graph with n nodes, each containing f features.

0 a2 A1n
a1 0 a2n
an1 GQpo ... 0

—_—

nXn adjacency

® Embeds graph structure: says which vertex 1s connected to which.
® The value could be 1 (0 for no connection) or 1t could be a weight

® Could be used with attention mechanism: the fixed weights are rep7aced
by learnable parameters. In training, the graph decides which i | guwwen

connections are relevant e erc
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The [Message Passing

/Al

Vl’/

b

Consider a graph with n nodes, each containing f features.

L19 )
0 a2 A1n L£21  L22 X23 L2 f Y11 . Wile
: W21 W22 W2c
a91 0 a9

AXW " - - -

n1 04dn2 - .. 0 w1 Wf2 ... Wee
%ﬁ \—\’—/
nXn adjacency Tn2 fXc (feature weightxchannels)

-_ . ——,
nX f (nodesX features)

® By performing a standard matrix product, one builds the
message

@ This 1s for one filter. One can have multiple filters,
for CNNs

34
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LUUe will use GCIMs for exercilse

® Images of 64x64x1 pixels

@Class 1: a sample of circles 1n grey
scale (one channel, pixels filled with

value in [0,1]) Q

@F111 pixels with Gaus(0.9,0.1) 0 10 2 30 4 50 6

@ Class 0: a noise sample, filled with
G(m,0.1) (m =0.3 or 0.7)

® Take the 100 pixels closer to 1

® Represent the event as a (100,3) Ili1st, the
three features being (11X, 1Y, GrayScale)

0.. °
. v e L
o.. 0.
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Summary

® Graph Networks are a powerful tool to learn from sparse
data sets

® extend CNN concept beyond the case of geometrical
proximity -> learned representation

@allow to abstract from irregular geometry (molecules,
particle-physics detectors, stars 1n a galaxy, ..)

@allow to 1nject domain knowledge 1n the game (e.g.,
enforcing physics rules for message-passing functions
[Newton’s law 1n N-body simulation]

@ But can also be used to learn (how to simulate) physics

36
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Aggregate
Aggregate # E

Input <&

Gateda Graphn Meural

-
-
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MNetworks =
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@ At the LHC, parasitic
collisions (pileup)
happen simultaneously to
your interesting one
(hard-scattering
collision)

® They typically happen at
~ same x and y, but at
d7fferent Z

® Charzed particles are
tracked back to their
origin and associated to
the 1nteresting collision
or to a parasitic one

® Neutrals cannot be
tracked back

Example: 9 9

llEU removs

PU

39
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Example: pilleup removal

3 — __WithPU  AfterremovingPUfromtracks _~~~~ NoPU
1 . ¥ ¥ .9
s 0f PU
1 @ HSC
Y
_3:L—l44“—12‘4‘(l)‘“2.4";4‘:-‘—144“—1214‘(1) ‘2',',,4,-"-,_14,“_.2, g 24
N n n

® We want to learn if a given neutral comes from PU of from the hard-scattering collision

@ We look at the problem projecting the solid-angle particle distribution 1n a plane (we
unroll the cylindrical detector 1nto a rectangle)

® Each point 1s a particle (size represents the energy carried by each particle)

® We know the particle charge, plus some extra feature we might want to use (e.g., particle
kind [electron, muon, etc.])

> . _. ...:....'- European

@ We have labels for charged particles, but not neutrals HOYC comen

210 e




Graph Metworks for PU removal

A
L 0 / 7
8 8 8 / Dense (50) /
O O O o o Dense (';m -
O O c |_| @ : ense (50)
O ! Z E Z a Z Dense (50)
O Z Z Z Dense (50)
0 O O O S ——
/d)» O O O

X2 x1 x1
® We use Gated Graph Neural Network (GGNN), a special kind of message-passing

architecture
@ Start from a set of particles, each represented as a set of features h
@ Build the graph

@ Use a recurrent network (GRU) to “pass” messages 1n sequential steps and evolve
the particle representation

@At each i1teration, we connect to different neighbours (start with close-by, then
go further) R

4]

European
Research
Council



Bullding the (_:]raph

@ Start with one particle (the red one)

@® Connect 1t to the closest ones (R<R0O) with one kind of edge

@ Connect 1t to the next-to-closest ones with a different

kind of edge

®..

® Each edge comes with a message A=
Gathered Messages
message

different for different

ZG XBQ)-

A =

= Adjacency matrix, a

learnable matrix,

kinds of edges

features of
the j-th vertex

.......
......
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Bl Multiple message passing

® The procedure 1s repeated T times using a GRU with n

steps
t t+1 T— T

I T i

mit(fit_l) mit+1(fit—1) miT(];T_l)




@l Done 3 times (for 3 GRU layers)

/ /
/ Dense (50) /

Dense (50)
Dense (50)

Dense (50)

Dense (50)

© 0
Oo )
GGNN (100)J
l@
GGNN (100)

X2 1 1

® The representation created by each layer 1s passed to the next

X
X

@®A ResNet-1l1ke skip connection 1s 1mplemented (input -> last layer)

® The per-particle outcome set of features (function of the features
of the connected particles) 1s used to train a dense classifier:
PU vs 1nteresting particle?

ava
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® Improve state-of-the-art
algorithms substantially

@Little dependence of
algorithm tuning on pileup
conditions

@ Small/No performance loss
with average number of PU
collisions

® Outperforms alternative

(DNNN, simple GRU)

45

True positive rate

npy 20 (CHS) 80 (CHS) 140 (CHS) 80 (No CHS)
pT 92.3% 92.3% 92.5% 64.9%
PUPPI weight  94.1% 93.9% 94.4% 65.1%
Fully-connected  95.0% 94.8% 94.8% 68.5%
GRU 94.8% 94.8% 94.7% 68.8%
GGNN  96.1% 96.1% 96.0% 70.1%

O O =
© o
U o

o
os)
0

0.75F

0.70

particle-based architecture: oss

ROC curve, npy =80

O
o
T l T T T T

0.80 |

pr + CHS, auc=92.3%

—== PUPPI weight + CHS, auc=93.9% :
—— Fully connected + CHS, auc=94.8% 1

GRU + CHS, auc=94.8% j
—— GGNN + CHS, auc=96.1%

False positive rate

https://arxiv.org/pdf/1810.07988.pdf

L
L
......

-* -
‘e s =0
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PUPPRIML: Graph Mets for PU subtraction
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https://arxiv.org/pdf/1810.07988.pdf

PUPPRIML: Graph Mets for PU subtraction
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Distance-UJelghted
Graph Metworks w=




Reducing memory consumption

2

® When building a graph of N vertices,
number of edges (and number of
computing operations) scale with N?

@® Thi1is might clash with computing
resource limitations (both for training
and 1nference)

@ Certainly, this 1s the case at the LHC

@ real-time event selection runs 1n
short time

@ most of the selection runs as

electronic circuilt on electronic
board
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@ Gravnet & Garnet: resource friendly

graph architectures htps:/arxiv.org/abs/1902.07987
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https://arxiv.org/abs/1902.07987

(bravi let

......

°°°°°°

OO0 O

5
10
15 5q > N

1) Start with a 2) Each Fiv 1s

graph 1n geometric processed by a linear
space. Each vertex network, returning
feature vector Fiv two outputs: a

1s characterized coordinate vector s &
by coordinates and a learned
features representation Fir

219

https://arxiv.org/abs/1902.07987
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3) With s and
Fir we build the
new graph 1n
the learned
space
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G r a V I l E t https://arxiv.org/abs/1902.07987

n QI G vy
w
dx Vk\f; Hour

V2 dyxk
‘.//d3k v
f2 ®

V3 ﬁ
4) Unlike DGCNN, .
t%e message 5) Message 6) Final
function is a aggregated with representation
potential function different 1s learned from
(we use ¢ where functions (Max, the engineered
7 e the Fuclidean Average,...) féaturgs_and
distance 1n the or7g7n§lg
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1 2) Each Fiy 1s
1) Start th |
giapha;n géomeiric processed by a Ili1near 3) s are the

' distances
space. Each vertex network, returning two

OO0 O

feature vector Fn,  outputs: a vector of from Ns

is characterized distances s & a aggregators

by coordinates and learned representation

features https://arxiv.org/abs/1902.07987 eTC Research
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4) Fwd distance-
weighted messages
from vertices are
gathered at
aggregators (weight
W,=e % where d 1s
Euclidean distance
1n learned space)

O OO0

6) Final
representation
1s learned from
the engineered
features and
the original
ones

5) Bkw distance-
weighted messages
from aggregators
are gathered at
vertices (weight
Wab =e ab)

https://arxiv.org/abs/1902.07987 Research

S2  https:/arxiv.org/pdf/2008.03601.pdf
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® Good performance
achieved,
comparable to DGCNN
and traditional
approaches

@ Us1ing a potential
(V(d) ) to weight
up the near
neighbours allows
to keep memory
footprint under
control (with
respect to other
graph approaches)
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&) INteraction Metworks

Ground truth Model rollout

and 9 balls + 4 walls

/abs/1612.00222
' ‘e rc Council
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Interaction ﬂetworksﬁ

® INs process a list of Noconstltuents \| , fo
No x P 1nputs 1n pairs, g . l
. ll - —}
through Receiving and iE-E (I“ I)
E D:x Ng
C [(P+Dg) x NoJ

Sending matrices .
B
° R-II-? NE X Nc
B |

B 2P x Ng

P features

Rs [No x N]

No: # of constituents

P: # of features ¢c, fo, fr
Ne = No(No-1): # of edges parameterized as
De: size of internal representations neural networks

Do: size of post-interaction internal representation
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INteraction ﬂetworks

-0
X 7.
@

® INs process a list of
No x P 1nputs 1n pairs,
through Receiving and
Sending matrices

® The effect of the
interaction 1s learned
by fR and combined with

kv ko kB3 Ly Es Lyg
O O 0 0 1 1 0

the input to learn Rr= 0,11 0 0 0 0 1
(through fo) a post- O:\0 1 1 0 0 0
1nteraction

representation kv FEo FE3 FE4 Es  Eg

O,(1 1 0 0 0 0
Rs= O, 0 0 1 1 0 0
Os;\0 0 0 0 1 1
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INteraction Metworks

® INs process a list of
No x P 1nputs 1n pairs,
through Receiving and
Sending matrices

® The effect of the
interaction 1s learned
by fR and combined with
the 1nput to learn
(through fo) a post-
Thteraction
representation

® The procedure can then
be 1terated to produce
further steps 1 the
1nteractions

57
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fr
No constituents ‘ | | fr
RR[N > III I l
. ( E D:x Ng )
RS[N x Ne]
C ((P+Dg) x Noj

.. . 'R-II-?[NEXNC

B 2P x Ng
O[Dox NO]

P features

No: # of constituents

P: # of features ¢c; fo, fr
Ne = No(No-1): # of edges parameterized as
De: size of internal representations neural networks
Do: size of post-interaction internal representation
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Example: |et taqqunc

® You have a jet at LHC: spray of
hadrons coming from a “shower”
Tnitiated by a fundamental
particle of some kind (quark,
gluon, W/Z/H bosons, top quark)

® You have a set of jet features
whose distribution depends on the
nature of the 1nitial particle

@ You can train a network to start
from the values of these
quantities and guess the nature
of your jet

@ 1o do this you need a sample for
which you know the answer
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IMs for Jet Identlﬁcatlon

No constituents f R

® In this case, there 1s o fr
no system update needed . .. . —} III I l
(i.e., no cycle) -J Hn-E (III I)
(|||---|
@ It 1s sufficient to use RS[NOXNE]
the post-interaction PP xNg
representation as 1nput C ((P+D) x Noj I
to a classifier that 0 | — NN o

returns the jet @‘_ rows O[DoxNo]
category @4_&( )4_( ) T B

® The three networks are 0-

A

simultaneously =
optimized: the learned
representation is P b of fogtures bc, fo, fr
Ne = No(No-1): # of edges parameterized as
g’;gzg’; ff‘c’a’gf;'; the neural networks
-1 erc oy




[ compartison

| — JEDImet: AUC = 0.9523 = 0.0001 || — JEDLnet: AUC = 0.9300 £ 0.0001 — JEDI-net: AUC = 0.9679 = 0.0001
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