Cosmology ETH Alexandre Refregier

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The Dark Universe

Cosmology

- ▶ Can look back in time
- ▶ Only one sky: cosmic variance
- Cosmological principle: $\langle \ldots \rangle_{\rm sky} = \langle \ldots \rangle_{\rm stat}$
- No controlled experiments
 - → Use combination of cosmological probes

Cosmological Probes

Cosmic Microwave Background

Supernovae

Gravitational Lensing

Galaxy Clustering

Dark Energy Survey

Blanco 4m at CTIO 74 2k×4k CCDs, 0.27"/pix 2.2 deg² FOV 5000 deg² survey (+SNe survey) g,r,i,z,y to mag 24 200M galaxies

Outline

- 0 Introduction
- I Cosmological Model
- Il Smooth Universe
- III Structure Formation
- IV Cosmological Probes
- V Current Status and Future Prospects

l Cosmological Model

Big Bang Model

Hubble Diagramme

Big Bang Nucleosynthesis

Cosmic Microwave Background

ACDM Model

Dark Matter

- Initially postulated by Zwicky (1933)
- Does not emit light: evidence via its gravitational effect
- Properties: weakly interacting, cold, non-baryonic, smooth
- Candidate: Unknown Particles beyond standard model

Dark Matter 23%

Dark Energy

- Describes recent acceleration of the expansion
- Fluid with equation of state parameter $w=p/\rho<0$
- Cosmological constant Λ : w=-1 at all times
- → difficult to reconcile with quantum mechanics of vacuum

Dark Energy 72%

Dark Matter 23%

Inflation

Inflation introduced to solve:

- Flatness problem
- Horizon problem
- Origin of structures problem

Exponential expansion driven by inflaton field

Quantum fluctuations yield large scale classical perturbations after inflation with $P_{\Phi}(k) \sim k^{n-4}$ and $n \simeq 1$

Thermal History of the Universe

Theoretical Predictions

Il Smooth Universe

General Relativity

In GR, physical distances in 4D space-time are given by a metric with Lorenz signature (-+++)

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

The metric determines the curvature of space time which is related to the matter content by Einstein's Equation

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Photon Trajectories

Geodesic equation

$$\frac{d^2x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda} = 0$$

Photon 4-momentum

$$p^{\mu} = \frac{dx^{\mu}}{d\lambda}$$

FRW Solution

For homogeneous and isotropic universe

$$ds^{2} = -dt^{2} + a^{2}(t) \left[d\chi^{2} + r^{2}(\chi)d\Omega \right]$$

$$r = \begin{cases} R_0 \sin(\frac{\chi}{R_0}), & \text{closed} \\ R_0 \sinh(\frac{\chi}{R_0}), & \text{open} \\ \chi, & \text{flat} \end{cases}$$

Friedmann Equation

Time-time component of the Einstein Equation for the FRW metric yields:

$$\frac{H}{H_0} = \left[\Omega_r a^{-4} + \Omega_m a^{-3} + \Omega_\kappa a^{-2} + \Omega_\Lambda\right]^{\frac{1}{2}}$$

$$H = \dot{a}/a$$

$$\Omega_i = \rho_i/\rho_{\rm crit}$$

$$\rho_{\rm crit} = 3H_0^2/8\pi G$$

Distances

Redshift:
$$1+z=\frac{\lambda_{\mathrm{obs}}}{\lambda_{\mathrm{emit}}}=\frac{1}{a_{\mathrm{emit}}}$$

Angular-Diameter distance: $D_A = R_{
m phys}/\Delta heta$

Luminosity distance: $F=L/4\pi D_L^2$

$$D_L = D_A a^{-2} = r(\chi) a^{-1}$$

Comoving Horizon (conformal time) $\eta = \int_0^a \frac{da'}{a'H(a')}$

Recombination

Dodelson 2003

Similar beyond equilibrium processes for: Big Bang Nucleosynthesis and Dark Matter relics

III Structure Formation

Cosmic Structures

Cosmological Perturbations

Perturbed metric:

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

Decomposition theorem:

- scalar perturbations
- vector perturbations
- tensor perturbations

Perturbed Einstein Equation:

$$\bar{G}_{\mu\nu} + \Delta G_{\mu\nu} = 8(\bar{T}_{\mu\nu} + \Delta T_{\mu\nu})$$

Perturbed FRW Model

Flat FRW model in Newtonian gauge with scalar perturbations:

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(1+2\Phi)\delta_{ij}dx^{i}dx^{j}$$

Boltzmann Equation

Distribution function: $f(t, x^i, p^i)$

Time evolution:

$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial x^i} \frac{dx^i}{dt} + \frac{\partial f}{\partial p^i} \frac{dp^i}{dt} = C[f]$$

Stress-Energy Tensor:

$$T^{\mu\nu} = \int \frac{d^3p}{(2\pi)^3 E} p^{\mu} p^{\nu} f(t, x^i, p^i)$$

Species and Interactions

Dodelson 2003

Einstein-Boltzmann Equations

Linear evolution

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau} \left[\Theta_0 - \Theta + \mu v_b - \frac{1}{2}\mathcal{P}_2(\mu)\Pi\right]$$

$$\Pi = \Theta_2 + \Theta_{P2} + \Theta_{P0}$$

$$\dot{\Theta}_P + ik\mu\Theta_P = -\dot{\tau} \left[-\Theta_P + \frac{1}{2}(1 - \mathcal{P}_2(\mu))\Pi\right]$$

$$\dot{\delta} + ikv = -3\dot{\Phi}$$

$$\dot{v} + \frac{\dot{a}}{a}v = -ik\Psi$$

$$\dot{\delta}_b + ikv_b = -3\dot{\Phi}$$

$$\dot{v}_b + \frac{\dot{a}}{a}v_b = -ik\Psi + \frac{\dot{\tau}}{R}[v_b + 3i\Theta_1]$$

$$\dot{\mathcal{N}} + ik\mu\mathcal{N} = -\dot{\Phi} - ik\mu\Psi.$$

$$k^2\Phi + 3\frac{\dot{a}}{a}\left(\dot{\Phi} - \Psi\frac{\dot{a}}{a}\right) = 4\pi Ga^2\left[\rho_m\delta_m + 4\rho_r\Theta_{r,0}\right]$$

$$k^2(\Phi + \Psi) = -32\pi Ga^2\rho_r\Theta_{r,2}.$$

Evolution of the Perturbations

Matter Power Spectrum

adapted from Lannus et al. 2014

Late times: $P(k,a) \sim k^n T^2(k) D^2(a)$

Nonlinear Evolution

Nonlinear Evolution

