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Cosmology: Study of the Universe



The Dark Universe



Gravity



Cosmology

‣ Can look back in time

‣ Only one sky: cosmic variance

‣ Cosmological principle:

‣ No controlled experiments

     → Use combination of cosmological probes

 



Cosmological Probes
Cosmic Microwave Background Gravitational Lensing

Galaxy ClusteringSupernovae



Dark Energy Survey
Blanco 4m at CTIO
74 2k×4k CCDs, 0.27’’/pix
2.2 deg2 FOV
5000 deg2 survey (+SNe survey)
g,r,i,z,y to mag 24
200M galaxies
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I Cosmological Model



Big Bang Model



Hubble Diagramme

Freeman et al 2000



Big Bang Nucleosynthesis

Weiss 2006



Cosmic Microwave Background

COBE/FIRAS, Mather et al. 1999



ΛCDM Model



Ordinary Matter
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Dark Matter
• Initially postulated by Zwicky (1933)

• Does not emit light: evidence via its gravitational effect

• Properties: weakly interacting, cold, non-baryonic, smooth

• Candidate:  Unknown Particles beyond standard model
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Ordinary
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Dark
Matter
23%



Dark Energy
• Describes recent acceleration of the expansion

• Fluid with equation of state parameter w=p/ρ<0

• Cosmological constant Λ: w=-1at all times

  → difficult to reconcile with quantum mechanics of vacuum

Ordinary
5%

Dark
Matter
23%

Dark
Energy
72%

100%

matter only

acceleration



Inflation
Inflation introduced to solve:

• Flatness problem
• Horizon problem
• Origin of structures problem

Exponential expansion driven by inflaton field

Quantum fluctuations yield large scale classical perturbations 
after inflation with PΦ(k)~kn-4 and n≃1  



MATTER 
ERA

DARK ENERGY 
ERA

Big
Bang

Adapted from Kolb & Turner 1990 

Thermal History of the Universe



Theoretical Predictions

Einstein-Boltzmann Eq:
• Background
• Linear
• Non-linear

General
Relativity

Non-Equilibrium
Stat. Mech.

Initial
Condition

3D Statistics

Cosmological 
Probes



II Smooth Universe



General Relativity
In GR, physical distances in 4D space-time are given by a metric 
with Lorenz signature (-+++)

ds2 = gµ⌫dx
µdx⌫

Gµ⌫ = 8⇡GTµ⌫

The metric determines the curvature of space time which is 
related to the matter content by Einstein’s Equation



Photon Trajectories
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FRW Solution
For homogeneous and isotropic universe



Friedmann Equation
Time-time component of the Einstein Equation for the 
FRW metric yields:



Distances

Redshift: 

Angular-Diameter distance:

Luminosity distance:

Comoving Horizon (conformal time)



Recombination
72 BEYOND EQUILIBRIUM 
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Figure 3.4. Free electron fraction as a function of redshift. Recombination takes place suddenly 
at z ^ 1000 corresponding to T ~ 1/4 eV. The Saha approximation, Eq. (3.37), holds in 
equilibrium and correctly identifies the redshift of recombination, but not the detailed evolution 
of Xe. Here Q^ = 0.06, Om = 1, /i = 0.5. 

The computation of the neutron/proton ratio affects the abundance of Hght 
elements today. Similarly, the evolution of the free electron abundance has major 
ramifications for observational cosmology. Recombination at z* ~ 1000 is directly 
tied to the decoupling of photons from matter.** This decoupling, in turn, directly 
affects the pattern of anisotropics in the CMB that we observe today. 

Decoupling occurs roughly when the rate for photons to Compton scatter off 
electrons becomes smaller than the expansion rate.^ The scattering rate is 

riear = XeUhOrT (3.43) 

where ar — 0.665 x 10~^^ cm^ is the Thomson cross section, and I continue to ignore 
helium, thereby assuming that the total number of hydrogen nuclei (free protons 
-f hydrogen atoms) is equal to the total baryon number. Since the ratio of the 

"^Notice from Figure 1.4 that even though photons stop scattering off electrons at 2; '^ 1000, 
electrons do scatter many times off photons until much later. This is not a contradiction: there 
are many more photons than baryons. In any event, many cosmologists shy away from the word 
decoupling to describe what happens at 2; ~ 1000 for this reason. 

^In Chapter 8 we will define a more precise measure of decoupling, making use of the visibility 
function, the probability that a photon last scattered at a given redshift. Using the visibility 
function, we will show that a CMB photon today most likely last scattered at a slightly higher 
redshift than inferred by the simple UCCTT ~ H criterion. 

Similar beyond equilibrium processes for: 
Big Bang Nucleosynthesis and Dark Matter relics 

Dodelson 2003



III Structure Formation



Cosmic Structures

!1 M☉!10-6 M☉
!105 M☉

!1011 M☉
!1014 M☉



Cosmological Perturbations

Perturbed metric:

Decomposition theorem:
• scalar perturbations
• vector perturbations
• tensor perturbations

Perturbed Einstein Equation:



Perturbed FRW Model

Flat FRW model in Newtonian gauge with scalar 
perturbations:

ds2 = �(1 + 2 )dt2 + a2(1 + 2�)�ijdx
idxj



Boltzmann Equation

Distribution function:

Time evolution:

Stress-Energy Tensor:



Species and Interactions
THE BOLTZMANN EQUATION FOR THE HARMONIC OSCILLATOR 85 

Neutrinos 

Photons 

Compton 
Scattering 

Dark 
Matter 

Electrons 
Coulomb 
Scattering 

Protons 

Figure 4.1. The ways in which the different components of the universe interact with each 
other. These connections are encoded in the coupled Boltzmann-Einstein equations. 

In this chapter, we derive the Boltzmann equations for photons, eletrons, pro-
tons, dark matter, and massless neutrinos. This set of equations governs the evolu-
tion of perturbations in the universe. 

4.1 THE BOLTZMANN EQUATION FOR THE HARMONIC OSCILLATOR 

Before tackhng the problem of interest — the Boltzmann equation for all species 
in an expanding universe — let us treat a much simpler example of the Boltzmann 
equation: the nonrelativistic harmonic oscillator. This simple example is very similar 
to the full general relativistic version we will encounter in the next section, but the 
algebra is much less cumbersome. So here the physics will be quite transparent. It 
will be useful to keep this example in mind when the algebra threatens to obscure 
the physics in the next section. 

Consider a one-dimensional harmonic oscillator with energy 

2m 2 
(4.2) 

The distribution function of the harmonic oscillator depends on time t, position x, 
and momentum p. Thus, the full time derivative in Eq. (4.1) can be rewritten as 

df{t, X, p) df df dx df dp 
dt dt dx dt dp dt' 

(4.3) 

Dodelson 2003



Einstein-Boltzmann Equations
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Figure 4.4. Some Legendre polynomials. Note that the higher order ones vary on smaller
scales than do the low-order ones. ln general 27 crosses zero I times between -1 and 1.

describes tlie change in tlie polarizatior field in space. Upon Foririer transfomring,
it too clepends on A:, p, and r7.

We now collect the equations we halie derlved for the photons, dark matter, and
barvons and supplernent thern with a trivial extension to rnassless neutriuos:
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(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

Equation (4.100) is the Boltzrnann equation for photons we have derived. The
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For matter, in conformal Newtonian gauge, €,n: 6 + (SaHulk); i.e., it reduces

to the ordinary overdensity 6 on scales smaller than the horizon. For radiation,
e^: 4@,,s - 12i,O,,1aHf k, again reducing to the standard overdensity on small
scales'

5.6 SUMMARY
The Einstein equations relate perturbations in the metric to perturbations in the
matter and radiation. Taking two components of the Einstein equations G p, :
8rGT1,,, we found equations governing the evolution of the two functions which
describe scalar metric perturbations, (D and V of Eq. (4.9). It is easiest to write
these equations in Fourier space. Again recalling our convention ofdropping thei
on transformed variables, we can write

- Too 3H€̂ a- +,-;kiToi.p K"p

*'? * ,; (* - -;) : 4trGaz lp*d* +4p"o",ol

k2@ : 4rGa2 
lo^d* 

-t 4p,@,,s . yf (rr^o*+ 4e.o,,1)]

k2(o + v) : -32rGa2 p,@,,2.

(5.27)

(5.33)

Here subscript rn inciudes all matter such as baryons and dark matter and subscript
r all radiation such as neutrinos and photons. More precisely

p^6* = pa^6 * paSt ; p,O,,o=Pt@olp,No

Pm'um = pdmu + pbub i P,@,,t = Pt@t * p,Nr. (5.80)

Some of the other components of Einstein's equation are redundant; they add no
new information about the evolution of O and {r. An example is the time-space
component, which you can derive in Exercise 5. At times, though, one form of the
evolution equation will be more useful than another. For example, one combination
(Exercise 6) of these equations leads to an algebraic equation for the potential,

(5 81)

Other components of Einstein's equation contain information not about the
scalar perturbations (D and V, but about vector and tensor perturbations. Scalar,
vector, and tensor perturbations are decoupled: each evolves independently of the
others. We will see in Chapter 6 that inflation can produce tensor perturbations, so
it is important to know what the Einstein equation says about their evolution. We
showed that there are two functions which can characterize tensor perturbations,
ha and h*; each of these evolves independently and satisfies

h*+zTir.+kzho:g
a

where a denotes t, x. In an expanding universe, the amplitude of a gravity wave
described by Eq. (5.63) falls off once the mode enters the horizon.

(5.63)

Linear evolution



Evolution of the Perturbations

a

R=k-1

comoving
Horizon

aeq

keq-1

radiation matter

aeq2

Dark Energy



Matter Power Spectrum

adapted from Lannus et al. 2014

Late times: P(k,a) ~ kn T2(k) D2(a) 

P(k)

linear

nonlinear

Baryon 
Acoustic 
Oscillations

keq

P(k) ~ kn



Kravstov et al. 2005

Nonlinear Evolution



Kravstov et al. 2005

Nonlinear Evolution


