The anomalous magnetic moment of the muon

Anian Altherr, Paola Tavella, Roman Gruber

Institute of Theoretical Physics ETH Zürich

January 19, 2022

1. Lattice QCD

2. Introduction to g-2 & Background

3. Hadronic contributions

Non-abelian gauge theories

Yang-Mills Lagrangian (4D, with P and T invariance):

$$\mathcal{L}=-rac{1}{4}F^{a}_{\mu
u}F^{\mu
u,a}+ar{\psi}\left(ioldsymbol{D}-oldsymbol{m}
ight)\psi$$

$$egin{aligned} \mathcal{F}^{a}_{\mu
u} &= \partial_{\mu}\mathcal{A}^{a}_{
u}(x) - \partial_{
u}\mathcal{A}^{a}_{\mu} + gf^{abc}\mathcal{A}^{b}_{\mu}(x)\mathcal{A}^{c}_{
u}(x) \ D_{\mu} &= \partial_{\mu} + ig\mathcal{A}^{a}_{\mu}(x)T^{a}, \end{aligned}$$

with action $S = \int d^4 x \mathcal{L}$. In path integral formalism, we have the Minkowski expectation value

$$\begin{split} \langle \mathcal{O}[\psi,\bar{\psi},A] \rangle &= \lim_{t \to \infty(1-i\epsilon)} \frac{1}{Z} \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}A \mathcal{O}[\psi,\bar{\psi},A] e^{iS[\psi,\bar{\psi},A]} \\ Z &= \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}A e^{iS[\psi,\bar{\psi},A]}. \end{split}$$

Discretization

4D lattice

$$\Lambda = \{n = (n_0, n_1, n_2, n_3) \mid n_i \in \{0, 1, \dots, L_i - 1\}, i \in \{0, 1, 2, 3\}\}.$$

$$egin{aligned} & A^b_\mu(x) = A^b_\mu(an) \longrightarrow a A^b_\mu(n), \ & \psi(x) = \psi(an) \longrightarrow a^{3/2} \psi(n) \ & U(x, x + \epsilon \hat{\mu}) = U(an, an + a \hat{\mu}) \longrightarrow U_\mu(n). \end{aligned}$$

- lattice extents $L_i \in \mathbb{N}$
- lattice constant a
- compensator field (link variable) $U(x, y) \left(\frac{\partial U}{\partial x^{\mu}} = igA^{a}_{\mu}(x)T^{a}\right)$

Discretization

The full discretized Yang-Mills action is

$$S = S_G + S_F,$$

$$S_G = \frac{1}{g^2} \sum_{n \in \Lambda} \sum_{\mu,\nu} Re \ tr \left[\delta_{\mu\nu} \cdot id - \hat{U}_{\mu\nu}(n) \right],$$

$$S_F = a^4 \sum_{n \in \Lambda} \bar{\psi}(n) \underbrace{\left[\sum_{\mu} \frac{\gamma^{\mu}}{2} (D_{+\mu} + D_{-\mu}) + m \right]}_D \psi(n)$$

- $D_{\pm\mu}$ are forward- and backward covariant derivatives
- *D* is the Dirac operator
- Large sparse matrix, dim d = 12V, (eg. 64⁴ lattice: $d \approx 10^8$, naively 500 petabytes)

Wick rotation

Rotating to the Euclidean action $e^{iS} \xrightarrow{WR} e^{-S_E}$ we obtain the Euclidean expectation value

$$\langle \mathcal{O}[\psi, \bar{\psi}, A]
angle = \lim_{\tau \to \infty} \frac{1}{Z} \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}A\mathcal{O}[\psi, \bar{\psi}, A] e^{-S[\psi, \bar{\psi}, A]}$$

 $Z = \int \mathcal{D}A \det(D) e^{-S_G[A]}.$

Interpret the exponential as probability density, $P(U) = Z^{-1}e^{-S}$,

$$\langle \mathcal{O}[U] \rangle = \lim_{\tau \to \infty} \frac{1}{Z} \int \mathcal{D} U e^{-S[U]} \mathcal{O}[U] \longrightarrow \sum_{U} P(U) \mathcal{O}[U],$$

$$\langle \mathcal{O}[U] \rangle \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[U_i].$$

Lattice QFT on the CPU

- large sparse linear operator (complex dimension $O(10^8)$)
- Markov chain alters the operator
- operator needs to be inverted repeatedly (solve $D\psi=\eta$)
- most used compute intensive kernel: sparse matrix-vector multiplication (SpMV), $D\psi$
- sparse linear algebra is **memory bound** (speed limited by memory bandwidth, not compute power)
- using supercomputers (O(100) nodes with O(100) cores) ightarrow high parallelizability
- large problem is decomposed into many smaller problems

Lattice QFT on the GPU

- modern supercomputers tend to include graphical processing units (GPUs)
- memory throughput is higher on GPUs
 - Piz Daint CPU node; 52.2 GB/s (Cray XC30)
 - Piz Daint GPU node; 250 GB/s (NVIDIA Tesla K20X)
 - Alps CPU node; ??? GB/s (HPE Cray EX)
 - Alps GPU node; 2039 GB/s (NVIDIA Tesla A100 via NVlink)
- GPU include *O*(1000) of cores (called steaming multiprocessors (NVIDIA))
- enable GPU processing in openQ*D (based on openQCD)
- enable GPU techniques (tensor-core, reduced precision, ...)

- My PhD is divided into 2 parts
- 1. part: funded via PASC project
 - computer science
 - high performance computing
 - actual implementations
- 2. part: purely theoretic, physics related, g-2, see Paola and Anians presentation

Standard model

Standard Model of Elementary Particles

Magnetic dipole moment

- particle with mass *m*,
- electric charge Qe,
- orbiting with angular momentum \vec{L} ,

• Bohr magneton
$$\mu_B = \frac{e\hbar}{2mc}$$
.

Magnetic moment

$$\vec{\mu}_m = \frac{Q\mu_B}{\hbar}\vec{L}.$$

Magnetic dipole moment

- particle with mass m,
- electric charge Qe,
- intrinsic spin $\vec{S} = \frac{\hbar}{2}\vec{\sigma}$,
- Bohr magneton $\mu_B = \frac{e\hbar}{2mc}$.
- gyromagnetic ratio g.

Magnetic moment

$$\vec{\mu}_m = g \, \frac{Q\mu_B}{\hbar} \vec{S}.$$

- Kronig, Goudsmit, Uhlenbeck (1925): g = 1,
- Dirac (1928): g = 2,
- Experiments: $g \approx 2 + 0.002$.

Anomalous magnetic moment

for lepton ℓ with gyromagnetic ratio g_{ℓ} :

$$\mathsf{a}_\ell := rac{g_\ell - 2}{2}.$$

Anomalous magnetic moments

	е	μ	au
mass	$0.51 \ \mathrm{MeV/c^2}$	$110 \ { m MeV/c^2}$	$1800 \ { m MeV/c^2}$
lifetime	stable	$2.2\cdot10^{-6}~{ m s}$	$2.9 \cdot 10^{-13} { m \ s}$

 $^{^1\}mbox{Hanneke}$ et al. (2008, 2011), CODATA recommended values of the fundamental physical constants: 2018

	е	μ	au
mass	$0.51 \ \mathrm{MeV/c^2}$	$110 \ { m MeV/c^2}$	$1800 \ { m MeV/c^2}$
lifetime	stable	$2.2\cdot 10^{-6}~{\rm s}$	$2.9 \cdot 10^{-13} { m \ s}$

• a_{τ} hard to determine due to short lifetime.

 $^{^1\}mbox{Hanneke}$ et al. (2008, 2011), CODATA recommended values of the fundamental physical constants: 2018

	е	μ	au
mass	$0.51 \ \mathrm{MeV/c^2}$	$110 \ { m MeV/c^2}$	$1800 \ { m MeV/c^2}$
lifetime	stable	$2.2\cdot 10^{-6}~{ m s}$	$2.9 \cdot 10^{-13} { m \ s}$

- a_{τ} hard to determine due to short lifetime.
- a_e determined up to less than 1 part per billion both in theory and experiment.¹

¹Hanneke et al. (2008, 2011), CODATA recommended values of the fundamental physical constants: 2018

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|} \hline e & \mu & \tau \\ \hline mass & 0.51 \ {\rm MeV/c^2} & 110 \ {\rm MeV/c^2} & 1800 \ {\rm MeV/c^2} \\ \hline lifetime & stable & 2.2 \cdot 10^{-6} \ {\rm s} & 2.9 \cdot 10^{-13} \ {\rm s} \end{array}$$

- a_{τ} hard to determine due to short lifetime.
- a_e determined up to less than 1 part per billion both in theory and experiment.¹
- Sensitivity δa_{ℓ} to new physics (Λ ultraviolet cut-off for new physics):

$$\frac{\delta a_\ell}{a_\ell} \sim \frac{m_\ell^2}{\Lambda^2}$$

¹Hanneke et al. (2008, 2011), CODATA recommended values of the fundamental physical constants: 2018

$$\begin{array}{c|cccc} e & \mu & \tau \\ \hline mass & 0.51 \; {\rm MeV/c^2} & 110 \; {\rm MeV/c^2} & 1800 \; {\rm MeV/c^2} \\ \hline lifetime & stable & 2.2 \cdot 10^{-6} \; {\rm s} & 2.9 \cdot 10^{-13} \; {\rm s} \\ \end{array}$$

- a_{τ} hard to determine due to short lifetime.
- a_e determined up to less than 1 part per billion both in theory and experiment.¹
- Sensitivity δa_{ℓ} to new physics (Λ ultraviolet cut-off for new physics):

$$rac{\delta a_\ell}{a_\ell} \sim rac{m_\ell^2}{\Lambda^2}$$

 \rightarrow Muon most suitable lepton for discovering new physics.

¹Hanneke et al. (2008, 2011), CODATA recommended values of the fundamental physical constants: 2018

Contributions

Figure: From left to right: first order QED, lowest-order weak, lowest-order hadronic.

Contributions

Data by Particle Data Group²

$$\begin{split} a^{\text{QED}}_{\mu}[\text{5-loop}] &= 116584718.93(0.10) \cdot 10^{-11}, \\ a^{\text{EW}}_{\mu}[\text{2-loop}] &= 153.6(1.0) \cdot 10^{-11}, \\ a^{\text{Had}}_{\mu}[LO] &= 6931(40) \cdot 10^{-11}, \\ a^{\text{Had}}_{\mu}[N(N)LO] &= 6(18) \cdot 10^{-11}, \\ a^{\text{SM}}_{\mu} &= 116591810(1)^{\text{EW}}(40)^{\text{Had},\text{LO}}(18)^{\text{Had},\text{N(N)LO}} \cdot 10^{-11}. \end{split}$$

Discrepancy between theory and experiment of 4.2σ :

$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 251(41)^{\text{exp}}(43)^{\text{SM}} \cdot 10^{-11}$$
(1)

²Particle Data Group, Review of Particle Physics (2020)

Machine learning and lattice QCD

- Goal: Approximate density $P(U) = e^{-S[\psi, \overline{\psi}, U]}/Z$.
- currently: Markov chain Monte Carlo (MCMC) suffers from critical slowing down: Autocorrelation time diverges for large lattice sizes.
- flow-based MCMC overcomes this issue for ϕ^4 theory. 3

³arXiv:1904.12072 (2019)

Hadronic contributions

The noisest contributions are the hadronic ones: Hadronic vacuum polarization (HVP) and hadronic light-by-light (Hlbl)

- at the energy of $O(m_{\mu})$ the QCD is non-perturbative
- at lowest order HVP and Hlbl contributions are $O(\alpha^2)$ and $O(\alpha^3)$
- different approaches to estimate these contributions.

The state of the art

Current SM results:

$$a_{\mu}^{HVP}(ext{e+e, up to NNLO}) = = 6845(40) \cdot 10^{-11}$$

 \implies Lattice results close to the experimental value, but errors are still too large

lattice ⊷∎⊶ R-ratio ⊷⊖⊶

Figure from arXiv:2002.12347 (2021)

Data-driven method

• dispersion relation + optical theorem:

$$\mathrm{Im}\Pi(q^2) \propto \sigma_{e^+e^- \to \mathsf{hadrons}} = R(q^2)\sigma_{e^+e^- \to \mu^+\mu^-} \implies a_{\mu}^{HVP} = \frac{\alpha^2}{3\pi^2} \int_{M_{\pi}^2}^{\infty} \frac{ds}{s} K(s)R(s)$$

- use experimental data (BaBar, KLOE, etc.) as input
- achieved precision $\sim 0.6\%$

Lattice approach

• key observable: EM vector-vector correlator (contributions from u, d, s, c, b quarks)

$$egin{aligned} &\langle \mathcal{O}_{\mu
u}
angle &=\langle J_{\mu}(x)J_{
u}(0)
angle \ &J_{\mu}(x) = \sum_{f}q_{f}\overline{\psi}^{f}(x)\gamma_{\mu}\psi^{f}(x) \end{aligned}$$

• example: by considering 2 flavours and using the Wick contractions:

connected

Hadronic vacuum polarization

• introduce the polarization tensor and its decomposition

$$\Pi_{\mu\nu}(Q) = \int d^4x e^{iQ\cdot x} \langle J_{\mu}(x)J_{\nu}(0)\rangle = \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2\right)\Pi(Q^2)$$

• perform the integration over momenta with a known kernel function⁴ $K(Q^2, m_{\mu}^2)$.

0.00

$$a_{\mu}^{HVP} = 4\alpha^{2} \int_{0}^{\infty} dQ^{2} \mathcal{K}(Q^{2}; m_{\mu}^{2})$$

$$\cdot (\Pi(Q^{2}) - \Pi(0)) = l_{1} + l_{2} + l_{3}$$

$$\int_{0.14}^{0.24} \int_{0.24}^{0.24} \int_{0.24}^{0.24}$$

Time-momentum representation (TMR)

• By inverting the order of the spatial Fourier transform and the integration over momenta:

$$egin{aligned} G(x_0) &= -rac{1}{3}\sum_{i=1,2,3}\int d^3x \langle J_i(x)J_i(0)
angle \ a_\mu^{HVP} &= \left(rac{lpha}{\pi}
ight)^2 \int_0^\infty \mathrm{d}t G(t) ilde{K}(t;m_\mu) \end{aligned}$$

• large relative statistical error at large $x_0 \implies$ several models to extrapolate data after x_0^{cut}

Figure from arXiv:1705.01775 (2017)

Challenges

Many efforts aim to reduce the errors on the theoretical side by focusing on:

- precise determination of the lattice scale a;
- noise reduction technique for statistical errors (smearing, multilevel...);
- finite size effects and continuum limit;
- isospin breaking effects due to QED (α_{EM}) and strong interactions ($m_u - m_d$)

Challenges

Many efforts aim to reduce the errors on the theoretical side by focusing on:

- precise determination of the lattice scale a;
- noise reduction technique for statistical errors (smearing, multilevel...);
- finite size effects and continuum limit;
- isospin breaking effects due to QED (α_{EM}) and strong interactions ($m_u - m_d$)

Isospin breaking

- arXiv:2002.12347 Isospin symmetric 633.7(2.1)(4.2) 53.393(89)(68) 14.6(0)(1 -13.36(1.18)(1.36)Strong isospin-breaking QED isospin-breaking: valence connected disconnecte disconnected -0.55(15)(10 -4 67(54)(69) connected -1.29(40)(21) 6.60(63)(53) Etc. OFD bottom: higher order: isospin-breaking nerturbative sea 0.11(4) connected 0 37(21)(24) disconnected -0.040(33)(21 **Finite-size effects** OFD isospin-symmetric isospin-breaking: 18.7(2.5) mixed isosnin-breaking connected -0.0093(86)(95) disconnected 0.0(0.1) 10¹⁰×a, LO HVP = 707.5(2.3) stat(5.0) sys[5.5] tot
- 1) QCD simulations + perturbative series in α_{EM} and $(m_u m_d)/(m_u + m_d)$ 2) first-principle method: QCD + QED simulations (C* boundary conditions)

C* boundary conditions

C* bc allows for electrically-charged states and propagation of charged particles

figure from arxiv:1908.11673 (2019)

C* boundary conditions

C* bc allows for electrically-charged states and propagation of charged particles

