The upgraded low-background germanium counting facility Gator for high-sensitivity γ-ray spectrometry

CHIPP Winter School 2022

Alexander Bismark

Adelboden, January 16th–21st 2022 alexander.bismark@physik.uzh.ch

Particle Astrophysics Department of Physics University of Zurich

The Gator Facility

- Low-background germanium counting facility for high-sensitivity γ-ray spectrometry^[2]
- Non-destructive and high-resolution material radioassay for rare-event search experiments
- Core: p-type coaxial high-purity germanium (HPGe) detector with 2.2 kg sensitive mass

[1] Eur. Phys. J. C77 (2017) 890; [2] JINST 6 (2011) P08010

The Upgraded Gator Detector

(a) HPGe detector inside Cu-OFE cryostat (cooled with LN_2 via copper coldfinger), (b) OFHC Cu cavity, (c) lead shield, polyethylene sheet, (d) airtight stainless steel enclosure (purged with GN_2), (e) glove ports, (f) sample load lock

Detector Operation and Performance

- Stable operation for over 10 years
- Remote monitoring (incl. alarms) of operations parameters to ensure detector stability and data quality
- Regular calibrations of the detector with radioactive sources (e.g. ²²⁸Th, ¹³⁷Cs, or ⁶⁰Co) or high-activity samples
 - FWHM at 1332 keV: (1.98±0.07) keV (Maeve: 3.19 keV^[3], GeOroel: 1.85 keV^[4])
 - Verification of simulated efficiencies and consistent activities related lines

[3] Eur. Phys. J. C80 (2020) 1044

[4] Bandac, "Ultra-Low Background Services in the LSC", DS-Mat Meeting, GSSI, 2019

Background Contributions

- Integrated background rate in the energy region 100-2700 keV: (82.0 \pm 0.7) d⁻¹kg⁻¹; as compared to value from 2010^[2]: (102.8 \pm 0.7) d⁻¹kg⁻¹; stable within runs (χ^2 /ndf ~ 1)
- Low energies (\leq 35 keV):
 - electronic noise
- Higher energies:
 - detector & shielding materials
 - environmental radon

Energy [keV]	Isotope	Rate '21 [d ⁻¹]	Rate '10 [d-1]	
351.932	Pb-214	< 0.7	0.7 ± 0.3	
609.312	Bi-214	0.53 ± 0.11	0.6 ± 0.2	
1120.29	Bi-214	0.15 ± 0.06	0.3 ± 0.1	
1764.49	Bi-214	0.10 ± 0.03	0.08 ± 0.06	
661.657	Cs-137	0.17 ± 0.08	0.3 ± 0.1	
1173.24	Co-60	< 0.3	0.5 ± 0.1	
1332.51	Co-60	0.11 ± 0.05	0.5 ± 0.1	
1460.88	K-40	0.46 ± 0.08	0.5 ± 0.1	
2614.51	TI-208	0.14 ± 0.05	0.2 ± 0.1	

[2] JINST 6 (2011) P08010

Sample Simulation and Analysis

 Determination of the material-, geometry-, and energy-dependent detection efficiency ε of the respective γ-lines through GEANT4 Monte Carlo simulations for each sample

Simulated PMT stems on detector

Resulting detection efficiencies lines

Sample Simulation and Analysis

• Calculation of the specific activities A from the background- and Comptonsubtracted counts S_{net} at the location (±3 σ) of the most prominent lines as

(branching ratio *r*, sample mass *m*, measuring time *t*)

• Combination to activities of isotopes / subchains ($L_d @ ~95\%$ C.L.)

Sample Simulation and Analysis

- Isotopes / chains of interest:
 - primordial: ²³⁸U, ²³²Th, ⁴⁰K
 - cosmogenic: ⁵⁴Mn, ⁴⁶Sc, ⁶⁰Co,...
 - anthropogenic: ¹³⁷Cs, ^{110m}Ag,...
 - → decay products may mimic signals (e.g. NRs of neutrons from (α ,n) reactions in XENON) or leak into the signal region
- Typical sensitivities: < a few mBq/kg for exposures of 1-3 weeks and several kg sample mass (a few µBq/kg for radio-pure samples, longer exposure & higher mass)

71.7 kg OFHC copper sample

Appendix

Th-228 Calibrations

Reproducible Low-Energetic Noise

- Observed low-energetic electronic noise, temporally correlated with LN₂ dewar refills, that might leak into the ROI (going up to energies of up to ~ 150 keV)
- Unbiased removal of data based on derivative of LN₂ level reading

For isotopes where detection limit is exceeded, current (not yet optimized) prototype model has, per active photocathode area*,

- equal threefold activities w.r.t. developed R11410 units^[1]
- lower activity compared to the R8520 PMTs^[5]
- → Good potential for future improvements through material selection
- * R12699 ~ 23.5 cm² , R11410 ~ 32.2 cm² , R8520 ~ 4.2 cm²

Isotope	Hamamatsu	Hamamatsu	Ratio R12699/	Hamamatsu	Ratio R12699/		
	R12699-406-M4	R11410-21	R11410	R8520-06	R8520-06		
Activity [mBq/PMT]							
²³⁸ U	< 8.02	(8 ± 2)	_	< 15	_		
²²⁶ Ra	(0.75 ± 0.19)	(0.6 ± 0.1)	(1.3 ± 0.4)	< 0.28	_		
²²⁸ Ra	< 1.23	(0.7 ± 0.2)	_	< 0.59	_		
²²⁸ Th	(0.54 ± 0.17)	(0.6 ± 0.1)	(0.9 ± 0.3)	(0.3 ± 0.1)	(1.8 ± 0.7)		
²³⁵ U	< 0.37	(0.37 ± 0.09)	_	< 0.67	_		
⁶⁰ Co	(2.03 ± 0.19)	(0.84 ± 0.09)	(2.4 ± 0.3)	(0.60 ± 0.04)	(3.4 ± 0.4)		
40 K	(26.2 ± 3.2)	(12 ± 2)	(2.2 ± 0.5)	(12.0 ± 0.8)	(2.2 ± 0.3)		
¹³⁷ Cs	(0.16 ± 0.05)	_	_	< 0.1	_		
⁵⁴ Mn	< 0.229	_	_	_	_		
Activity [mBq/cm ²]							
²³⁸ U	< 0.341	(0.25 ± 0.06)	-	< 3.569	-		
²²⁶ Ra	(0.032 ± 0.008)	(0.019 ± 0.003)	(1.7 ± 0.5)	< 0.067	-		
²²⁸ Ra	< 0.052	(0.022 ± 0.006)	-	< 0.140	-		
²²⁸ Th	(0.023 ± 0.007)	(0.019 ± 0.003)	(1.2 ± 0.4)	(0.071 ± 0.017)	(0.32 ± 0.13)		
²³⁵ U	< 0.016	(0.012 ± 0.003)	-	< 0.159	-		
⁶⁰ Co	(0.086 ± 0.008)	(0.026 ± 0.003)	(3.3 ± 0.5)	(0.144 ± 0.010)	(0.60 ± 0.07)		
⁴⁰ K	(1.11 ± 0.14)	(0.37 ± 0.06)	(3.0 ± 0.6)	(2.86 ± 0.18)	(0.39 ± 0.05)		
¹³⁷ Cs	(0.007 ± 0.002)	_	-	< 0.024	-		
⁵⁴ Mn	< 0.010	_	-	_	-		

[1] arXiv:1705.01828; [5] arXiv:1103.5831

References

- [1] XENON collaboration, E. Aprile et al., Material radioassay and selection for the XENON1T dark matter experiment, Eur. Phys. J. C77 (2017) 890
- [2] L. Baudis et al.,Gator: a low-background counting facility at the Gran Sasso Underground Laboratory, JINST 6 (2011) P08010
- [3] LZ collaboration, D. S. Akerib et al., The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs, Eur. Phys. J. C80 (2020) 1044
- [4] Bandac, "Ultra-Low Background Services in the LSC." Talk a the DS-Mat Parallel meeting at GSSI, 2019
- [5] E. Aprile et al., Material screening and selection for XENON100, Astropart. Phys.35 (2011) 43–49
- [6] L. Currie, Limits of qualitative detection and quantitative determination, Analytical Chemistry, 1968, 40 (3), 586-593