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Analysis Target

Heavy neutral leptons (HNLs) produced in the decay of a W
boson, resulting in one prompt charged lepton and two 3
displaced charged leptons, with common vertex beyond —

the tracker system, in the whole CMS Run 2 dataset

In this presentation /

O Brief introduction to HNL theory and searches

O Probed signature and motivation 7

0 Overview of the analysis strategy
O Study of the physics reach

O Outline of current status and future plans
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The yMSM and the HNLs =

3 right-handed HNLs as potential solution for some of the w1072

outstanding problems ot the SM:

O Origin of neutrino masses

0 Anomalous mass scale for the neutrinos

(allowing N to be Majorana — Seesaw mechanism)

O Lightest N ( ~

KeV range) as viable DM candidate

O Baryon asymmetry problem
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current limits (f‘|||eo|.areas) arXiv:2102.12143

and future projections | 10" . o T . i

(contours) 10 102
my[GeV]

Ns are sterile: only interaction through mixing with vg,

Low production rates due to low mixing parameters

N Vl?
spin 0 HNL production explored at colliders and beam-dump
experiments
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https://arxiv.org/abs/2102.12143

Probed Signature > 1

HNL Production in W Decays

Final state: / For long-lived HNLs:
. * | prompt-charge lepton
® | ow missing . |
Opposite
transverse momentum cloctric
(no sensitivity) charges

O Sensitivity to both Lepton-Number-Violating (LNV) and
Lepton-Number-Conserving (LNC) signatures

J

Flavour of final-state leptons depends on the mixing
between HNLs and SM neutrinos

I

Focus of this analysis: secondary vertices beyond the
tracker system

4
Z* mediatior 0=
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Physics Reach

Previous CMS searches for both prompt

and displaced HNL decays in final
states with three charged leptons [6, /]

CMS-PAS-EXO-20-009
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Requiring secondary vertex displacement beyond the tracker
system extends the sensitivity of previous CMS analyses to
lower HNL mass and coupling

Muon coupling dominance: U~: U,:U; = 0:1:0
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* Possible extension: prompt electron + 2 displaced muons —— |V}, |
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http://cds.cern.ch/record/2777047

Analysis Strategy

Signal Selection

% Event objects:

< 1 prompt muon (p; > 24 GeV)

% 2 Displaced STandAlone (DSA)
muons with common vertex fit

Key; tuon

Electron

Charged Hadron {e.g.Pion)

— — — - Neutral Hadron (e.g. Neutron)
=== e« Photon

< Signal topology cuts
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N/
%

cos@ > 0.9

prip + pp) > 10 GeV
AR(uy, pp) < 1

Nbr(b jets) = =

Z veto: m(p, + u,) < 80 GeV

(And others...) l

/

¢ 125

Hq

q Ho
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Background estimation

< Main SM background sources:
T or 2 prompt muons in final state:

tt, Drell-Yan, W+jets

Need for data-driven methods for
background estimation (unreliable
simulation samples)

N/
%

0 Current hypothesis: main backgrouna
source = real muons produced near
the primary interaction vertex, but for
which no track is reconstructed in the
tracking system ( )

Final goal: setting exclusion limits at 95%
. confidence level for HNL production in the
My, - \VNﬂl2 plane




Sensitivity Study

O Preliminary studies showed very low background levels
) 100 - —— Expected limit
after current selection (O(1) - ©(10) events) + 5 std. deviation
. . cie ~1 _ e =+ 1 std. deviation
O First study of exclusion sensitivity conducted under the 1075
hypothesis of O backgrouna 10-2 -
O Signal estimation performed on HNL simulation samples = _ ;-
: : ) >
at different mass values and scanning over | VNﬂ\
10—4 -
HNL mass: 3.0 GeV
120 - ]
—— N expected signal 105 o
100 L~ | —— N=3 events ]
1 | i + 1 std. deviation ]
| HNL decays + 2 std. deviation 107° 5 —
go4| beyond CMS ] 1 | | . .
o ~ detector . HNL decays within 1 2 3 4 >
> 60 - T Mass [GeV]
= the tracker system
. | \ Estimated exclusion limits for the coupling of one single
HNL with the muon neutrino
20
0 | | | | | O Sensitivity for low HNL masses: my < 6 GeV
1077 1075 103 107! 101 N | d limits i | ! .
v? 'O Improv Imits In th wer INg region
Expected signal yield for the whole Run 2 from HNL MC sample as lw Pro e ts the lowe coupiing ?g_?
a function of squared coupling for an HNL mass of 3 GeV
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CMS, !
Summary and Future Plans

\ \‘\ \\\
o |

J

. extend the sensitivity of HNL searches at CMS towards low masses and coupling values by
considering higher HNL flight-lengths

I

: tinal states with three charged muons, one prompt and two super-displaced from the

same secondary vertex

]

. low background levels with sensitivity to HNL production up to HNL mass of 5 GeV

]

: background estimation (dominant source: true non-displaced muons misidentified as

super-displaced due to tracking inefticiency)

J

O Finalisation of background estimation strategy

O Optimisation of selection process

O Statistical interpretation to set exclusion limits in the my - | Vyy, B plane

O Evaluation of systematic uncertainty on expected signal and background yields
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Muon Reconstruction at CMS b1

\‘»\\ \\ \\

. . . . CMS  Simulation Preliminary 8 TeV

Tracks reconstructed independently in the inner tracker (tracker track) and in the N A L A L A AR
muon system (standalone muon track) — inputs for muon track reconstruction: S T ackersen i L p. muomenly 0
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B 1 O
I A 1 «
o tracker tracks matched with at least 1 muon segment (inside-out) - i F\ 1 &
N¢ . . . 10° & ‘f’ ““ — wn
o STA track matched with tracker track (outside-in) : E 1 3

i o .-m;l"* . .

ey ——en,, L e | | T

s Charged Hadron {e.g.Pion) :'.‘":.""‘ WUV E"’:“.‘; ‘!;'“ 3 fﬂq

— — — - Neutral Hadron {e.g. Neutron) ”5 - 'ql:ﬁ:i : ¢

..... Photon ) | a1 IEI:Y'::; a1 é L lg

0 05 1 15 2

A (a/p,) 7 (a/p,)

Transverse slice
through CMS A

e [
4 .‘,.
.....

Setnlimtn
ARAE NSRS
- M H I H
. - o
IL
nﬂur- o x
H:f wl
— |
et e
M H I H
[ senclsing
[ Se—
. =
scnelnant

Electromagnetic ¥,
Calorimeter

Calorimeter Superconducting
Soleroid
Iron return yoke interspersed
with Muon chambers
Oom im 2n 3m M M ém m

Displaced StandAlone (DSA) muon track

Special STA reconstruction algorithm:

* Hits in the muon system only (same as standard
STA algorithm)

Seeds from cosmic muons

More suitable for muons from displaced vertices
(ho dependency on beam spot position)
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https://cms.cern.ch/iCMS/jsp/db_notes/noteInfo.jsp?cmsnoteid=CMS%20DP-2015/015
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Signal Selection - Details

\\
o |

AR(DSA, po) > 1 Z veto: m(u,u’) < 80 GeV
pr> 5 GeV
Op /P < 1 Charge selection: g(u, + u,) =0
Nbr(valid hits) > 12
x*/ndof < 2.5 Ap(pg, ) > 1.5 Ad(ug, 1) > 1.5
® Global/tracker muon veto: each DSA muon required not to
match any mediumID global/tracker muon (matching given ARy, ) <1
by AR < 0.7)
— Actually displaced muons Pr(py + pp) > 10 GeV
® Matching with STA muons: each DSA muon uniquely cos(d) > 0.9
matched (AR < 0.4) with an STA muon in the same event
— Add time information to each muon object 40 GeV < m(uy + py + 1) < 90 GeV
® Time selection: reconstructed muon time (both the one | ® bjetp,> 25 GeV
reconstructed with the whole muon system and the one only Nbr of b jets = 0 e btagDeepFlavB > 0.2770
reconstructed with the RPC) required to be lower than 10 ns
— Reject out-of-time muons from other bunch crossings prob(sV) > 0.001
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Notes on Background Estimation

O Current hypothesis: main bac
interaction vertex, but for whic

<ground source given by real muons produced near the primary

— Misidentitied as super-displaced muons

0O Strategy for data-driven background estimation:

n no track is reconstructed in the tracking system

ABCD method by inverting the global/tracker muon veto (used to ensure real displacement) for the 2

DSA objects
Dsa2 (subleading)
veto
Passed Failed
Dsat (leading)| ' 2°S€d A 5
veto C D

method underestimates the background yield

e Passed: dsa muon not matched with
global/tracker muon

* Failed: dsa muon matched with
global/tracker muon (inverted
prompt veto)

O Closure tests on both 2016 UL W+jets MC sample and on opening-angle data sideband show that this

— Probable correlation between the two vetoes (More studies for strategy optimisation ongoing)

Anna Mascellani
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. CMS,
ABCD Method Details p.

Why?
W If considered particles are actual muons, the global/tracker
muon veto only depends on the muon kinematics (p, 11, @)

O Apply weights in region D to match fgg% S g ot
distribution of kinematic variables in o ] = ;
. 100 E 50? E
region C: o T E :
of T4t + R 3 :

n; 2ok N E T I

. l’ C = E_. ....... Lo b b by by IZ'.:.='=..__'._ﬁ_.—._&=H_E : _:Fq:-:_:ﬁ* e e ’T*_f:d:?tp._k . E

0 pr, - dependent 1D weights w; = — : e -
: = B ot IR =

nz,D FTIE %% %ﬁr&% iﬁﬂ%ﬂmﬂ%j% . ‘Hﬁﬁﬁ% s

3E o TR b | =

a0 2D weights in (PTW 77,42) and (PTW Cbﬂz)

w 3 ﬁﬁi et B +% —nrne)

O Verity agreement between distributions in / o ﬁ# 1 ﬁfﬂ? mﬁﬂm :
region C and D with respect to kinematic o i e I f %ﬂ}ﬁ :
variables used in signal selection “EHT $ ﬁmﬂ_ 1 o A *iﬁﬁ

O Apply derived weights to events in region 1§§ﬂ%++++ﬂ%ww+ """"""""" gé%w%ﬂ%%ﬁﬂ%wﬁﬂﬁ@é
B to estimate yields in region A R R S o I S e R
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ABCD Method Validation

Two possibilities for method validation:

X

O Background simulation samples
— Low statistics

O Data sideband regions /

- = = ==

\ Opening angle sideband

e Signal selection: cos@ > 0.9

—> Sideband: cos @ < (0.9

e (Good agreement in region C and D after
kinematic re-weighting

e Comparison between estimated and expected
yield in region A inconclusive

To catch eventual correlation of the misidentification fake
rate with the detector geometry, sideband regions identified

by cutting on variables independent of AR(u;, i,)

‘ e (Good agreement N region C and D after | inear correlation
kinematic re-weighting factor:
e Underestimation of background yield in p == 01483
region A — Further studies ongoing
Anna Mascellani CHIPP Winter School 2022 14



ABCD Method Validation

® Main assumption in the ABCD method: leading
muon veto independent of subleading muon veto

Ny N
_— — = —

Np np

® Test of this assumption in opening angle sidebana

(cos @ < 0.9):

® Prediction for n, obtained by applying weights
Llok;

(Pr,,,1,,) to events in region B
Mp,i

® [Cxpected value for n, given by count in region A
in the data sidebanad

Anna Mascellani
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After Inclusive Selection

nA predicted 23.1
Error (nA predicted) 0.9
nA expected 54
Error (nA expected) 7/

Pull 4.2

After Whole Selection
Opening Angle Sideband

nA predicted 1.51
Error (nA predicted) 0.24
nA expected 5.0
Error (nA expected) 2.2
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Ongoing Work b

0 ABCD method tends to underestimate n,

O If there is correlation between the two vetos, then the overall probability for y, to pass the
veto might be higher when u; passes the veto

. | Presence of real super-

When does this happen? ———-
[Presence of comelated (non-diplaced) | ¢ |

T e e - displaced di-muon systems |
g . 4 fake rat  Presence of correlated (non-displaced) di- from physics background |
i-muon systems and fake rate | | . | « | |
* 1 SYStems ahd | , | muon systems and fake rate correlation | QL At
- correlation with specitic detector regions; with charge isolation / presence of jets |
U —— —— e
| S S i S|
> s —o0.12 £ . Ty
N E % 400__|_ — Data in region C_: % ’ o —— Dataiin regionCE
2 — 01 8 200 — Data in region D | 8 00 & — Datainregion D |
= 000 = 500;' —f NPT M&
| F ER: 1| Other effects to be
. = .
0 600 |- —; 300H e i analysed...
- - 2005- —i i!

e.g. presence of
| correlated out-of- |

time di-muons |

A —— .
100: s S T ]

ratio
ratio

-2 -1.5 -1 -0.5 0 0.5 1

= | E|
0 10 20 30 40 50 60 70 80 90 10(

2D plot of fake-rate (ratio between yields in region C y
and D) as a function of  and ¢ of u, Fake rate as a function of i, charge isolation and AR from the closest jet
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Sensitivity Study

Upper bound uncertainty larger than lower bound one due to
"blobs” in signal yield uncertainty for some mass values

HNL mass: 4.0 GeV

17.5 - —— N expected signal
—— N=3 events
15.0 1 I =+ 1 std. deviation

e 425 - + 2 std. deviation

109 - —— Expected limit

+ 2 std. deviation

10-1 - B £ 1 std. deviation
10—2_

Y 10

10—4 _
10—5_

107° - o —

1 2 3 4 5

Mass [GeV]

Exclusion limits in the my, - | Vyy, |* plane
for HNL masses between 1 and 5 GeV.

Anna Mascellani

signal yield

1077 107> 1073 1071 101

Origin of these blobs still unclear, but the sensitivity in the
upper side of the plane is not higher than the previous CMS
analysis, so the current focus is mainly on the lower part
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