Bayesian Unfolding

K. Bierwagen, U. Blumenschein, A. Quadt
$2^{\text {rd }}$ Institute of Physics, Georg-August-University Göttingen
January 20, 2011

Helmholtz Alliance

Bundesministerium für Bildung
und Forschung

Causes

Effects

G. D'Agostini

- Each cause can produce different effects
\rightarrow For a given effect the exact cause is not known
- But their probabilities can be calculated assuming some knowledge about migration, efficiency and resolution
- Probabilities $P\left(E_{j} \mid C_{j}\right)$ are estimated from MC
- Goal: determine the probability $P\left(C_{i} \mid E_{j}\right)$
- Simple inversion not possible
- Bayes theorem yields solution

Reminder: Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

$n\left(C_{i}\right)$: \#evts in cause bin i
$n\left(E_{j}\right)$: \#evts in effect bin j

G. D'Agostini

$$
\begin{gathered}
P\left(C_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid C_{i}\right) \cdot P_{0}\left(C_{i}\right)}{\sum_{l=1}^{n_{C}} P\left(E_{j} \mid C_{l}\right) \cdot P_{0}\left(C_{l}\right)} \\
\hat{n}\left(C_{i}\right)=\frac{1}{\epsilon_{i}} \sum_{j=1}^{n_{g}} n\left(E_{j}\right) \cdot P\left(C_{i} \mid E_{j}\right) \quad \epsilon_{i} \neq 0
\end{gathered}
$$

- Described by G. D'Agostini (NIM A362 (1995) 487)

Uncertainties

$$
\begin{aligned}
& \widehat{n}\left(C_{i}\right)=\sum_{j=1}^{n_{B}} M_{i j} \cdot n\left(E_{j}\right) \\
& M_{i j}=\frac{P\left(E_{j} \mid C_{i}\right) \cdot P_{o}\left(C_{i}\right)}{\left[\sum_{l=1}^{n_{n}} P\left(E_{l} \mid C_{i}\right)\right] \cdot\left[\sum_{l=1}^{n_{c}} P\left(E_{j} \mid C_{l}\right) \cdot P_{\mathrm{o}}\left(C_{l}\right)\right]} \\
& \text { - } \mathrm{M}_{\mathrm{ij}} \text { terms of the unfolding matrix } \mathrm{M} \\
& \text { - } M \text { is clearly not equal to the } \\
& \text { inverse of the migration matrix } \\
& \text { - } P_{0}\left(C_{j}\right) \text { : initial probabilities } \\
& \text { - } n\left(E_{\mathrm{j}}\right) \text { : data sample } \\
& \text { - } P\left(E_{j} \mid C_{j}\right) \text { : migration probabilities }
\end{aligned}
$$

- Sources of uncertainties:
- $P_{0}\left(C_{i}\right)$: no uncertainty is introduced
- $n\left(E_{\mathrm{j}}\right)$: data is assumed to be mutinomial distributed

$$
V_{k l}(\underline{n}(E))=\sum_{j=1}^{n_{B}} M_{k j} \cdot M_{l j} \cdot n\left(E_{j}\right) \cdot\left(1-\frac{n\left(\overline{\widetilde{N}}_{j}\right)}{\widehat{N}_{\text {true }}}\right)-\sum_{\substack{i, j=1 \\ i \neq j}}^{n_{B}} M_{k i} \cdot M_{i j} \cdot \frac{n\left(E_{i}\right) \cdot n\left(E_{j}\right)}{\widetilde{N}_{\text {true }}}
$$

- $P\left(E_{j} \mid C_{j}\right):$

$$
V_{k l}(\mathrm{M})=\sum_{i, j=1}^{n_{\mathbb{E}}} n\left(E_{i}\right) \cdot n\left(E_{j}\right) \cdot \operatorname{Cov}\left(M_{k i}, M_{l j}\right)
$$

- Total uncertainty: $V_{k l}=V_{k l}(\underline{n}(E))+V_{k l}(\mathbf{M})$
- Define a migration matrix

$$
\begin{array}{rlc}
M_{1}= & \left(\begin{array}{ccc}
0 & 0.1 & 0.1 \\
0.2 & 0.3 & 0.5 \\
0.8 & 0.6 & 0.4
\end{array}\right) & M_{2}=\left(\begin{array}{ccc}
0 & 0.1 & 0.8 \\
0.2 & 0.8 & 0.2 \\
0.8 & 0.1 & 0
\end{array}\right)
\end{array} M_{3}=\left(\begin{array}{ccc}
0 & 0.025 & 0.95 \\
0.05 & 0.95 & 0.05 \\
0.95 & 0.025 & 0
\end{array}\right)
$$

- Use ensemble tests for performance checks
- Mean values are well described, but uncertainties are too large
- Comparison between uncertainties from ensemble tests and the program for 3 different migration matrices

- Less migration leads to an over estimation of the uncertainties
\rightarrow Migration effect is not treated correctly in the error calculation
- Assumptions for the error calculation have to be checked
- Problem: Program assumes a multinomial distribution for the data
- Multinomial distribution:

$$
\begin{aligned}
& \operatorname{var}=n p_{j} \cdot\left(1-p_{j}\right) \\
& \operatorname{cov}=-n p_{i} p_{j}
\end{aligned}
$$

- But each bin is multinomial distributed
- The sum of multinomial distributions is only a multinomial distribution if all distributions are the same
\rightarrow The columns of the migration matrix has to be equal to get the correct estimate for the uncertainty
\rightarrow Not the typical case in data analysis
- Implement the new uncertainty calculation for the data into the program
- Assumption: The data sample is a realization of a sum of multinomial distributions

$$
\begin{aligned}
V_{k l}(\underline{n}(E))= & \sum_{j=1}^{n_{E}} M_{k j} \cdot M_{l j} \cdot \sum_{r=1}^{n_{E}} \hat{n}\left(C_{r}\right) \cdot P\left(E_{j} \mid C_{r}\right) \cdot\left(1-P\left(E_{j} \mid C_{r}\right)\right) \\
& -\sum_{\substack{i, j=1 \\
i \neq j}}^{n_{E}} M_{k i} \cdot M_{l j} \cdot \sum_{r=1}^{n_{E}} \hat{n}\left(C_{r}\right) \cdot P\left(E_{i} \mid C_{r}\right) \cdot P\left(E_{j} \mid C_{r}\right)
\end{aligned}
$$

- Comparison of the pull distributions for the old and the new uncertainty calculation for a migration matrix with medium migration $\left(\mathrm{M}_{2}\right)$

- Comparison between uncertainties from ensemble tests and the program with and w/o fluctuations in the migration matrix $\left(M_{2}\right)$ for the new error calculation

\rightarrow The new uncertainty calculation shows a clear improvement
- Described by G. D'Agostini (arxiv:1010.0632 (2010))
- Based on the previous method
- But uncertainties are treated differently:
- Quantities are described by probability density functions
- Uncertainty propagation is done by sampling
- Results will be compared soon with my improvements for the old method
- Iterative (Bayes) Method:
- Performance of this method is checked
- New uncertainty calculation shows a clear improvement
- Improved iterative (Bayes) Method:
- Code exist in R implemented by G. D'Agostini and in C++ implemented by J. Therhaag
- Outlook:
- Compare improved iterative (Bayes) method with the results of my improvements on the old method

