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Abstract
I give a short introduction to Bayesian Unfolding and describe my work on the
improvement of the uncertainty calculation for this method.

1 Introduction
Bayesian Unfolding has been used since 1994 and was introduced by G. D’Agostini (see Ref. [1]).
For our application area the method shows problems in the evaluation of the uncertainties. Therefore,
performance studies using ensemble testing are shown for the Bayesian Unfolding Method. An improved
uncertainty calculation has been developed to providing a better error calculation.

2 Bayes Method
The procedure of Bayesian Unfolding can be explained using a picture of causes C and effects E, in
which causes correspond to the true values before smearing and effects to the values after smearing.
Each cause can produce different effects, but for a given effect, as is the case in a measurement, the exact
cause is not known. However, the probability for an effect produced from a defined cause P (Ej |Ci) can
be estimated assuming some knowledge about the migration, efficiency and resolution. This is usually
achieved by using Monte Carlo. Now the goal is to estimate the probability P (Ci|Ej) that different
causes Ci were responsible for the observed effect Ej . A simple inversion cannot be used to solve this
problem, but Bayes theorem yields a solution.

P (Ci|Ej) =
P (Ej |Ci) · P0(Ci)∑nC
l=1 P (Ej |Cl) · P0(Cl)

, (1)

n̂(Ci) =
1
εi

nE∑
j=1

n(Ej) · P (Ci|Ej) εi 6= 0, (2)

with n̂(Ci) the expected number of events in the cause bin i, n(Ej) the number of events in the effect
bin j, P0(Ci) the initial probabilities and εi the efficiency that the cause i has an effect. This formula can
be rewritten in terms of the unfolding matrix M

n̂(Ci) =
nE∑
j=1

Mij · n(Ej), (3)

Mij =
P (Ej |Ci) · P0(Ci)

[
∑nE

l=1 P (El|Ci)] · [
∑nC

l=1 P (Ej |Cl) · P0(Cl)]
, (4)

which is clearly not equal to the inverse of the migration matrix. For the calculation of the covariance
matrix of n̂(Ci) two different sources are taken into account, an uncertainty on the distribution of the
effects n(Ej)

Vkl(n(E)) =
nE∑
j=1

Mkj ·Mlj · n(Ej) ·
(

1− n(Ej)
N̂true

)

−
nE∑

i,j=1
i 6=j

Mki ·Mlj ·
n(Ei) · n(Ej)

N̂true

, (5)
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with the true number of events N̂true and an uncertainty on the migration probabilities P (Ej |Ci)

Vkl(M) =
nE∑

i,j=1

n(Ei) · n(Ej) · Cov(MkiMlj). (6)

The total uncertainty is calculated from the sum of both covariance matrices

Vkl = Vkl(n(E)) + Vkl(M). (7)

In the following this method with its uncertainties is checked using a toy Monte Carlo.

2.1 The Toy Monte Carlo
This section describes a simple toy Monte Carlo, which is used in the following to check the method.

Three different migration matrices with different migration (large migration (S1), medium migra-
tion (S2) and low migration (S3)) for 3 bins without efficiency losses are defined

S1 =

 0 0.1 0.1
0.2 0.3 0.5
0.8 0.6 0.4

 , S2 =

 0 0.1 0.8
0.2 0.8 0.2
0.8 0.1 0

 , S3 =

 0 0.025 0.95
0.05 0.95 0.05
0.95 0.025 0

 .

For the unfolding, two different sources of uncertainties are present: a finite amount of data and a fi-
nite number of events for the creation of the migration matrix. Therefore, three different cases were
considered: create randomly 2000 test distributions to simulate the finite amount of data events, create
randomly 2000 migration matrices from fixed probabilities on top of the test distributions to simulate
statistical fluctuations in the migration matrix due to a finite statistics in Monte Carlo and finally create
randomly 2000 uniformly distributed true distributions in addition.

2.2 Performance checks
For the performance checks of the method, a C++ implementation of Ref. [1] is used.

In order to quantify if the absolute values and the uncertainties are correct ensemble testing is
used. The width of the Gaussian distribution from ensemble testing is compared to the uncertainties
calculated by the program using pull distributions: pull = (yi − µ)/σi with the unfolded values yi, the
truth value µ and the calculated uncertainties σi. If the uncertainties are correctly estimated, the width of
the pull distributions is expected to be compatible with 1. These tests show that the mean values are well
described as expected, but the uncertainties are too large.
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Fig. 1: Comparison between the deviations from ensemble tests and the uncertainties calculated by the program
for 3 different migration matrices.
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Fig. 1 shows the pull distributions for the three different migration matrices. With decreasing
migration in the migration matrix, the pull distributions become broader. If the uncertainty calculation
is correct and for a correct treatment of the migration effect, the pull distributions are expected to be
standard Gaussians (mean zero and unit variance). As shown, less migration leads to an overestimate
of the uncertainties, so the migration effect is not treated correctly in the uncertainty calculation. This
problem seems to come from the fact that the program assumes a multinomial1 distribution for the data,
but each bin is multinomially distributed and the sum of multinomial distributions is only a multinomial
distribution if all distributions are equal. In order to fulfil this requirement, the columns of the migration
matrix have to be equal to get the correct estimate for the uncertainty from the program, which is not the
typical case in data analysis.

Due to the fact, that the data sample is a sum of multinomial distributions, the formula for the
calculation of the covariance matrix Vkl for the data sample n(E) is changed from Eqn. 5 to

Vkl(n(E) =
nE∑
j=1

Mkj ·Mlj ·
nC∑
r=1

n̂(Cr) · P (Ej |Cr) · (1− P (Ej |Cr))

−
nE∑

i,j=1
i 6=j

Mki ·Mlj ·
nC∑
r=1

n̂(Cr)P (Ei|Cr) · P (Ej |Cr). (8)

(a)

bin

1 2 3

(p
u
ll)

σ

0

0.2

0.4

0.6

0.8

1

1.2 old uncertainty

new uncertainty

(b)
Constant  7.5± 270.6 

Mean      0.01337± 0.01537 

Sigma     0.0098± 0.5867 

i
σ)/µ

i
(y

3 2 1 0 1 2 3

e
n
tr

ie
s

0

50

100

150

200

250

Constant  7.5± 270.6 

Mean      0.01337± 0.01537 

Sigma     0.0098± 0.5867 

Constant  4.5± 159.4 

Mean      0.0227± 0.0242 

Sigma     0.0170± 0.9889 

Constant  4.5± 159.4 

Mean      0.0227± 0.0242 

Sigma     0.0170± 0.9889 

old uncertainty
new uncertainty

(c)

bin

1 2 3

(p
u
ll)

σ

0

0.2

0.4

0.6

0.8

1

1.2

1.4
old uncertainty

new uncertainty

(d)

Fig. 2: Comparison of the pull distributions (a,c) and the width of the pull distributions (b,d) for the old and the
new uncertainty calculation for large and medium migration.

Fig. 2 shows the comparison of the pull distributions between the old and the new uncertainty
calculation for the migration matrix with large migration and with medium migration for the first bin
and the width of the pull distributions for each of the three bins. As expected, for large migration,

1A multinomial distribution is a generalization of the binomial distribution with more than two possible outcomes.
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only a small improvement due to the new uncertainty calculation is visible, whereas for the migration
matrix with medium migration a clear improvement is visible. For both cases with the new uncertainty
calculation the width of the pull distribution is now compatible with unity. Furthermore, the differences
between the pull distributions for a randomly generated migration matrices and a fixed migration matrix
vanishes using the new uncertainty calculation (Fig 3).
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Fig. 3: Comparison of the width of the pull distributions for the old uncertainty calculation (a) and the new
uncertainty calculation (b).

The new uncertainty calculation shows a clear improvement and solves all previously mentioned
problems. Meanwhile, there is an improved Bayesian Unfolding method available, which was also de-
scribed by G. D’Agostini in Ref. [2] and which is based on the previous method but the uncertainties are
treated differently. In this method the quantities are described by probability density functions and the
error propagation is done by sampling. The next step is to compare this method with my improvements
for the old method. This will be pursued in the near future.

3 Summary
This article describes performance studies using ensemble testing for Bayesian Unfolding. This study
is motivated by the fact that the uncertainties for this method seem to be too large compared to the
fluctuations. In order to solve this problem, an improved uncertainty calculation is presented which
shows a good performance.
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