SVD-based unfolding: implementation and experience

Kerstin Tackmann, Andreas Höcker
CERN, Geneva, Switzerland

Abstract
With the first year of data taking at the LHC by the experiments, unfolding methods for measured spectra are reconsidered with much interest. Here, we present a novel ROOT-based implementation of the Singular Value Decomposition approach to data unfolding, and discuss concrete analysis experience with this algorithm.

1 Introduction
The measured spectrum of a physical observable is usually distorted by detector effects, such as finite resolution and limited acceptance. A comparison of the measured spectrum with theoretical predictions requires a removal of these effects to obtain the true, underlying physical spectrum, or the folding of these effects into the theoretical prediction. Unfolding methods provide ways for correcting the measured distributions, where the difficulty lies in the statistical instability of the inversion problem, requiring regularization. One widely used method is based on a singular value decomposition (SVD) of the detector response matrix [1].

The unfolding problem can be formulated as a matrix equation, \(\hat{A}_{ij} \cdot x_j = b_i \), where \(x \) is the true, physical distribution, \(b \) the measured distribution. \(\hat{A}_{ij} \) is the probability for an event generated in bin \(j \) to be reconstructed in bin \(i \) and as such, \(\hat{A} \) describes finite resolution and inefficiencies and can be obtained from the simulation (or appropriate control samples). The singular value decomposition of \(\hat{A} \) serves both for shedding light on the underlying instability of the problem, as well as for providing a solution. Small singular values, which are often present in detector response matrices, are found to greatly enhance statistical fluctuations in the measured distribution. A suitably chosen regularization procedure dampens the enhanced fluctuations. Rewriting the above equation to \(A_{ij} \cdot w_j = b_i \), where \(A_{ij} \) now contains numbers of events rather than probabilities, and \(w \) describes the ratio between the desired physical distribution and the underlying true distribution in the simulation (for example), allows for a better treatment of the statistical uncertainties in the detector matrix. At the same time, this allows for a physically motivated regularization via a discrete minimum-curvature condition on the ratio of the unfolded distribution and a simulated truth distribution, which corresponds to retaining the statistically significant contributions of \(w \), shown to be related to the larger singular values in the decomposition of \(A \).

This note presents a C++ implementation of the SVD-based unfolding, discusses analysis experience with this algorithm, and provides a comparison to the iterative dynamically stabilized unfolding method (IDS) [2] for a concrete example.

2 ROOT-based implementation
A C++ implementation of the SVD-based unfolding is provided by TSVDUnfold, which is part of the ROOT analysis framework [3] as of version 5.28. It can also be used through the RooUnfold framework [4], which is based on ROOT and comes with additional functionality.

TSVDUnfold provides access to the singular values of the detector response matrix and to the distribution of the \(|d_i|\) (see Ref. [1]), which help to properly set the regularization strength parameter in the unfolding. TSVDUnfold also allows to propagate covariance matrices of the measured spectrum through the unfolding using pseudo experiments. In addition it provides the covariance matrix of the
Fig. 1: Unfolding toy example. (Left top) Reconstructed and unfolded toy data, as well as the truth distributions for toy data and toy simulation. (Right top) Ratio of diagonal errors obtained by pseudo experiments and computed during the unfolding. (Left bottom) Correlation matrix on the unfolded spectrum as computed during the unfolding and (Right bottom) as obtained from pseudo experiments.

unfolded spectrum related to finite statistics in the simulation sample (or control sample) that is used to determine the detector response matrix, also making use of pseudo experiments.

More recently, TSVDUUnfold has been extended to also provide the regularized covariance matrix and the inverse covariance matrix (not regularized) computed during the unfolding (see Eqs. (52,53) in Ref. [1]). In addition, the new version of TSVDUUnfold implements the internal rescaling of the unfolding equations making use of the full covariance matrix of the measured spectrum (see Eq. (34) in Ref. [1]) rather than only its diagonal elements.

3 Covariance matrices

The covariance matrices of the unfolded spectrum as computed during the unfolding and as obtained from pseudo experiments, respectively, have been compared for a toy example (see Fig. 1) and have been found in good agreement. The uncertainties (taken from the diagonal elements of the covariance matrices) provided by the two methods agree to better than 4% and the correlations are well-reproduced. Even in the case of non-optimal regularization, the two methods provide compatible results: the uncertainties obtained with the two methods have been found to agree within 6% (11%) for a strongly under- (over-) regularized unfolding, with compatible correlation patterns.

4 Experience with SVD-unfolding in BaBar

The SVD-based unfolding has been used in numerous data analyses over the past 15 years, among which is the unfolding of the hadronic mass spectrum in inclusive, charmless, semileptonic B-meson decays, $B \to X_u \ell \nu$, at the $BaBar$ experiment [5]. Due to the nature of the measured spectrum, its unfolding and in particular the determination of the appropriate regularization required careful studies.
The relatively low statistics of estimated 10^27 signal events and the subtraction of the dominant $B \to X_c \ell \nu$ backgrounds result in sizable statistical and systematic uncertainties. The size of the bins has been chosen to equal the hadronic mass resolution in signal events. Due to the large uncertainty in the reconstruction efficiency of the tagging method used, which results in a significantly better hadronic mass resolution, the unfolded spectrum is normalized to unit area, which results in increased bin-by-bin correlations.

The regularization has been determined with the use of pseudo experiments, where the toy data and toy simulation distributions and detector response differ in the assumed value of the b-quark mass, which determines the shape of the inclusive hadronic mass spectrum and is one of the primary results of the analysis. The regularization has been chosen such that the unfolding bias in the spectral moments of the unfolded spectrum, which are directly related to the b-quark mass, is small compared to their statistical errors.

A few observations have been made which are of relevance for the unfolding of spectra with sizable uncertainties. The unfolding gains stability when the internal rescaling of the equations that is performed by the SVD-based unfolding (see Ref. [1]) takes both the statistical and the systematic uncertainties into account, since this provides a better estimate of how well the different regions of the measured distribution are known. Moreover, the propagation of the covariance matrices of the measured spectrum to the unfolded spectrum shows a more linear behavior and is less likely to be affected by instabilities in the unfolding in the presence of sizable uncertainties when the covariance matrices related to different sources of uncertainties are propagated separately and then combined.

5 Comparison to interactive dynamically stabilized unfolding

It is instructive to compare the results of different unfolding methods for the same example. Here, we present the results for the toy example of Sect. 3, using both SVD-based and IDS [2] unfolding.

The regularization for the two methods has been determined independently. For the SVD-based unfolding, the distribution of the $|d_i|$ has been used to chose the regularization ($k = 16$). For the IDS unfolding, it has been determined using the toy data as well as the reconstructed improved toy simulation distributions. The unfolding results can be seen in Fig. 3. Neither unfolding result shows any obvious bias with the chosen regularization. However, the result of the IDS unfolding shows somewhat larger fluctuations around the true distributions as well as larger uncertainties, which points to a looser regularization than that used for the SVD-based unfolding. In addition, the observed pattern in the bin-by-bin correlations is very different. The result of the SVD-based unfolding shows positive correlations.
Fig. 3: Unfolding toy example. (Left) The results obtained with SVD-based unfolding and IDS unfolding are compared to the true toy distribution. (Right) The ratio of the unfolded distributions and the truth distribution.

between neighbouring bins, negative correlations in the medium range, and very small correlations in the long range. The result of the IDS unfolding in general shows smaller correlations, and neighbouring bins tend to be anti-correlated. In general, the stronger the regularization, the larger and broader are the positive correlations between adjacent bins. The difference in the correlations observed between the SVD-based and IDS unfolding results are due to the stronger regularization in the SVD-based unfolding, which is also apparent in the smaller diagonal errors.

6 Summary

TSVDUnfold provides a C++ implementation of the SVD-based unfolding algorithm and is available as part of the ROOT analysis framework. Recently, it has been improved to take into account bin-by-bin correlations in the measured spectrum. SVD-based unfolding has been successfully used in many data analyses and a concrete example from the \textit{BABAR} experiment has been presented, along with observations that are of relevance for unfolding spectra which are subject to large uncertainties. In addition, unfolding results for a toy example have been compared using SVD-based and IDS unfolding.

Acknowledgements

The authors wish to thank Vakhtang Kartvelishvili for discussions and advice related to the SVD-based unfolding, as well as Heiko Lacker for the collaboration in the implementation of TSVDUnfold. We furthermore wish to thank Bogdan Malaescu for general discussions on unfolding and providing the unfolded example spectrum using IDS unfolding. Thanks to Lorenzo Moneta TSVDUnfold is now distributed as part of the ROOT analysis framework, and thanks to Tim Adye it can be used also through RooUnfold.

References

 Also: V. Kartvelishvili, “Unfolding with SVD”, this report.
 Also: B. Malaescu, arXiv:0907.3791 [physics.data-an]