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1. INTRODUCTION

Ü The problem:

a(x ) =
Z

dy g(x ; y) � b(y)

Given an estimate for a(x ) and known g(x ; y) reconstruct an estimate for b(y)!

v study Volker Blobel’s classical example rescaled to [0; 1]
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Ü gaussian resolution function with � = 0:05
Ü quadratic bias with � = 0:1
Ü parabolic efficiency loss towards phase space limits with � = 0:5
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The Discrete 1-dim Linear Unfolding Problem

Ü the high energy physics use case

a(x ) is estimated from a counting experiment

Ü represented by a histogram with poisson errors on bin contents

b(y) is (proportional to) a cross-section, i.e. non-negative

Ü conveniently also represented by a histogram

g(x ; y) becomes a matrix mapping b ! a

ak =

nX
i=1

Gki � bi with k = 1; 2; : : : m

Ü reduced problem to infer only average densities over finite bin sizes

Ü furthermore:

8 assume the response matrix is exact, i.e. ignore quantization errors

8 consider “constrained” problems m = n
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Numerical Simulation
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Finite Resolution

Ü Fourier-analysis of a signal

schematically:

b(y) =
Z

d! A(!) cos(!y)

effect of finite resolution:

a(x ) =
Z

dy
1p
2��

e�(x�y)2=2�2 � b(y) =
Z

d! e�!
2�2 �A(!) cos(!x )

high frequency components in a(x ) exponentially suppressed

accessible only with very large statistics

complete unfolding even after discretization usually not possible

Ü very unsatisfactory results from b = G�1 � a
Ü Zhigunov,83: improvement of the resolution function rather than unfolding

Ü try to make this more quantative: : :
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2. SINGULAR VALUE DECOMPOSITION (SVD)
v SVD for any matrix A[m ; n ] with m � n

A[m ;n ] = U [m ;n ] �W [n ;n ] �V [n ;n ]T with

UT �U = V T �V = V �V T = 1n and positive definite diagonal matrix W

Ü diagonalization of the unfolding problem
transform measurements x = M a such that C (x ) = M C (a)MT = 1m

SVD of the response matrix (M G) of the transformed problem:

x = (M G) b = (U W V T ) b

introduce normalized measurements u
u = UTx with C (u) = UT C (x )U = 1n

diagonalized problem

W �1u = V T b components: uk=Wkk =

nX
i=1

V T
ki bi

Ü expansion of b into orthogonal functions: bi =
P

k (uk=Wkk )V T
ki
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Numerical Example with 104 Events
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Numerical Example with 105 Events
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Orthogonal Functions of the Unfolded Distribution
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Discussion

measurements provide only limited information about the true distribution

Ü 104 events: 5–10 coefficients

Ü 105 events: 10–15 coefficients

unstable results when using all coefficients, i.e. naive matrix inversion

regularization: ignore measurements of higher order coefficients

Ü set to zero, i.e. don’t use higher order functions

Ü replace by external criteria, using e.g. Maximum Entropy

8 least informative distribution

8 non-negative (if exists)

8 numerically efficient and unique solution

resolution of unfolding result determined by measured part

Ü quantitative estimates : : :
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Resolution of Truncated Expansions

in principle given by Nyquist-Shannon theorem, however,

want gaussian resolution to compare with initial response function: : :

v study response to delta-functions

input: bi = �iI

expansion: uk =

nX
i=1

vkibi = vkI

re-sythesis: bI =

mX
k=1

ukvkI =

mX
k=1

v2
kI note: bI = 1 if m = n

Ü content of central bin bI fixes width of (normalized) gaussian

�

w
=

1p
8 erf �1(bI )

� 1p
12

with w = bin width

Ü illustration
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Behaviour of the Numerical Example
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3. UNFOLDING

Ü build unfolding result from measured leading order coefficients

regularization by truncation, i.e. limiting unfolded resolution

compare two methods to supply higher order coefficients

Ü case a: fixing to zero

Ü case b: Maximum Entropy

error propagation

Ü case a: analytic linear error propagation

Ü case b: error Monte Carlo to catch non-linearities

observable figures-of-merit to look at

Ü average resolution: �� (in units of bin width)

Ü visible statistics: Nvis

Nvis =
B2

TrC (b)
with B =

nX
i=1

bi

Ü study 104 and 105 observed events
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4. CONCLUSIONS

v ansatz: determine regularization by looking at resolution

resolution controlled by the order of the expansion

errors scale with initial statistics and resolution

Maximum Entropy approach more stable than simple truncation

within resolution, some artefacts may survive

Ü combine bins to match FWHM, i.e. 2:35�� (initially use 60 bins)

Ü extend regularization to lower order coefficients

Work in progress – more to come: : :
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