Searches in Astrophysics and Cosmology

Ofer Lahav University College London

Outline

- Methodology and recent trends in Astro-statistics
- Five real-life examples:
 - 1. Cosmological parameters
 - 2. Neutrino mass
 - 3. Photometric redshifts
 - 4. Galaxy shapes and classification
 - 5. Exo-planets

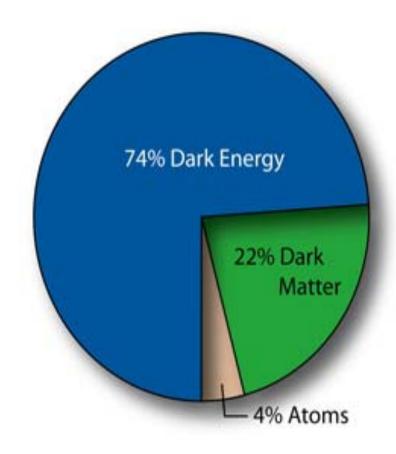
modern Astro-Statistics books

- Lyons (1991)
- Press et al. (1992)
- Lupton (1993)
- Babu & Feigelson (1996)
- Sivia (1996)
- Cowan (1998)
- Starck & Murtagh (2002)
- Martinez & Saar (2002)
- Wall & Jenkins (2003)
- Saha (2003)
- Gregory (2005)
- Hobson et al. (2009)

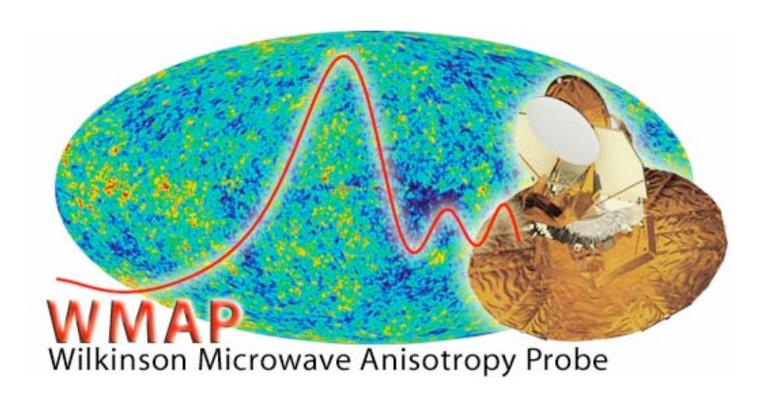
Recent trends

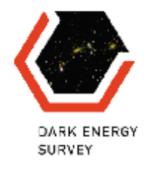
- Astro-Statistics is more 'respectable'.
- In Cosmology, Bayesian approaches are more popular (since 90s) than Frequentist methods.
- More awareness of model selection methods (e.g. Evidence, AIC, BIC, ...).
- Computer intensive methods (e.g. MCMC) are more common, and free packages available.

Example 1: cosmological parameters


"Evidence" for the Dark Universe

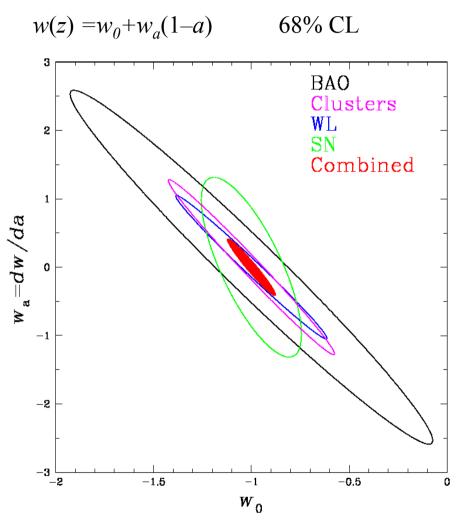
Observational data


- Type Ia Supernovae
- Galaxy Clusters
- Cosmic Microwave Background
- Large Scale Structure
- Gravitational Lensing


Physical effects:

- Geometry
- Growth of Structure

"WMAP ++ Cosmology"



The Dark Energy http://www.darkenergysurvey.org

Fisher Matrix FoM as a tool for decision making by funding agencies

Example: FoM for Dark Energy Survey is a factor 4.6 tigther compared to near term projects

Sources of uncertainties

- Cosmological (parameters and priors)
- Astrophysical (e.g. cluster M-T, biasing)
- Instrumental (e.g. PSF)

Use and Abuse of

- Priors
- Marginalization
- Evidence

How to choose a prior? (e.g. on the curvature)

```
* Theoretical prejudice
(e.g. "according to Inflation the universe must be flat")
* Previous observations
(e.g. "we know from WMAP the universe
```

```
(e.g. "we know from WMAP the universe is flat to within 2%")
```

* Parameterized ignorance (e.g. "uniform prior, Jeffrey's prior, or Entropy prior?")

Can we rule out w = -1?

WMAP 7-year Cosmological Interpretation

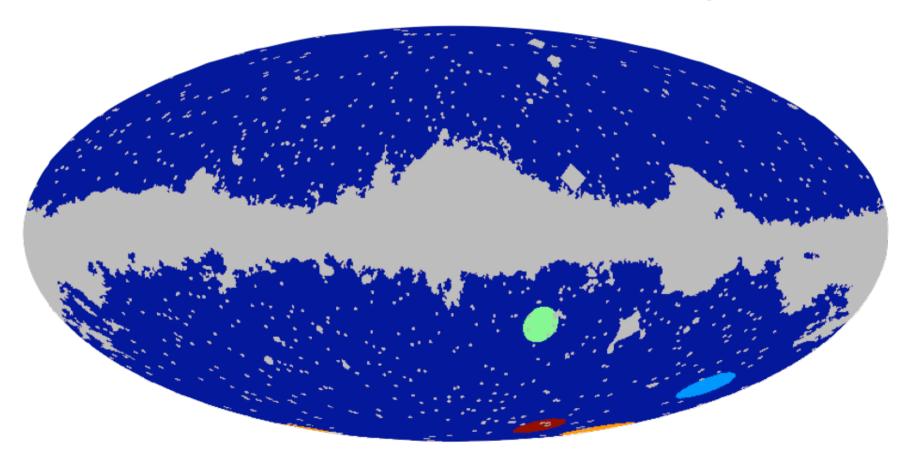
TABLE 4
Summary of the 68% limits on dark energy properties from WMAP combined with other data sets

Section	Curvature	Parameter	$+BAO+H_0$	$+ \text{BAO} + H_0 + D_{\Delta t}{}^{\text{a}}$	+BAO+SNb
Section 5.1	$\Omega_k = 0$	Constant w	-1.10 ± 0.14	-1.08 ± 0.13	-0.980 ± 0.053
Section 5.2	$\Omega_k \neq 0$	Constant w	-1.44 ± 0.27	-1.39 ± 0.25	$-0.999^{+0.057}_{-0.056}$
		Ω_k	$-0.0125^{+0.0064}_{-0.0067}$	$-0.0111^{+0.0060}_{-0.0063}$	$-0.0057^{+0.0067}_{-0.0068}$
			$+H_0+SN$	$+BAO+H_0+SN$	$+BAO+H_0+D_{\Delta t}+SN$
Section 5.3	$\Omega_k = 0$	w_0	-0.83 ± 0.16	-0.93 ± 0.13	-0.93 ± 0.12
		w_a	$-0.80^{+0.84}_{-0.83}$	$-0.41^{+0.72}_{-0.71}$	$-0.38^{+0.66}_{-0.65}$

Bayesian Evidence: To BE or not to BE?

$$p(d|\mathcal{M}) \equiv \int_{\Omega_{\mathcal{M}}} p(d|\theta, \mathcal{M}) p(\theta|\mathcal{M}) d\theta$$
 (Bayesian evidence).

$$B_{01} \equiv \frac{p(d|\mathcal{M}_0)}{p(d|\mathcal{M}_1)}$$
 (Bayes factor).

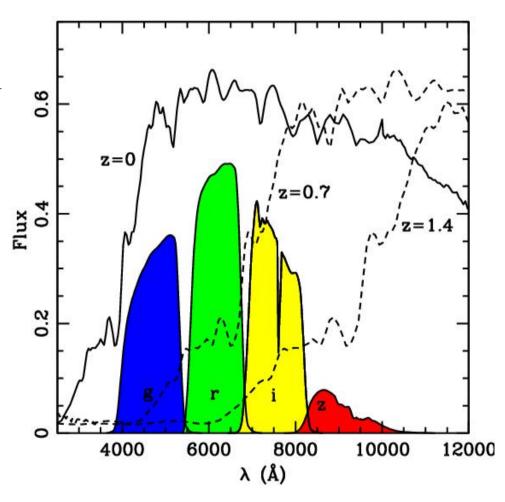

e.g. B=1 weak; B=5 strong

But how sensitive to assumed priors?

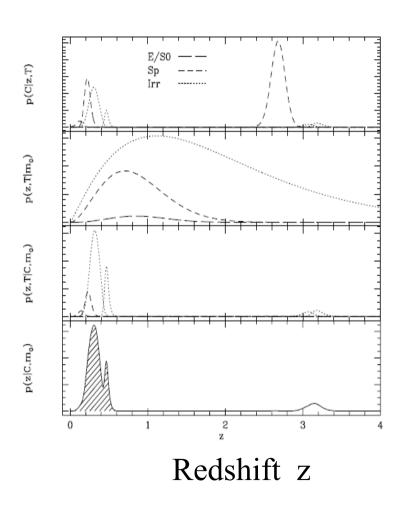
Variations: AIC, BIC, DIC,...

e.g. Liddle (2007), Trotta (2008), Efstathiou (2009)

WMAP 7-Year: circles in the CMB sky?

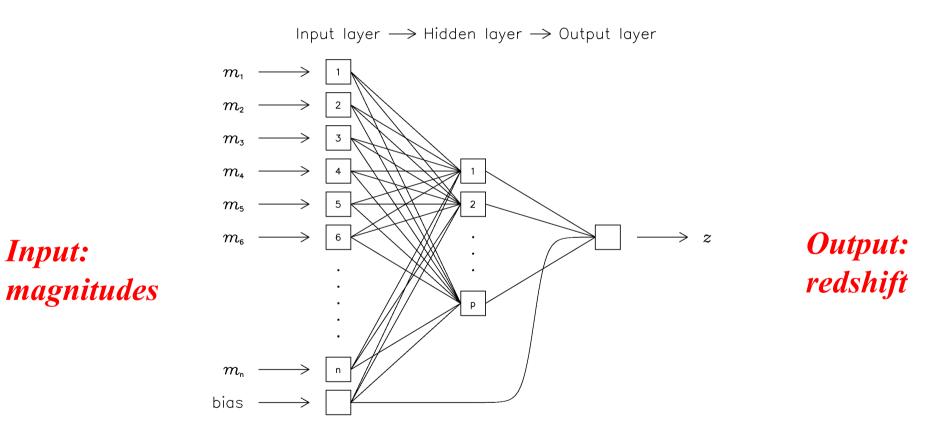

Fenney, Peiris, Johnson & Mortlock (2010)

Example 2: Photometric Redshifts


Photometric redshift

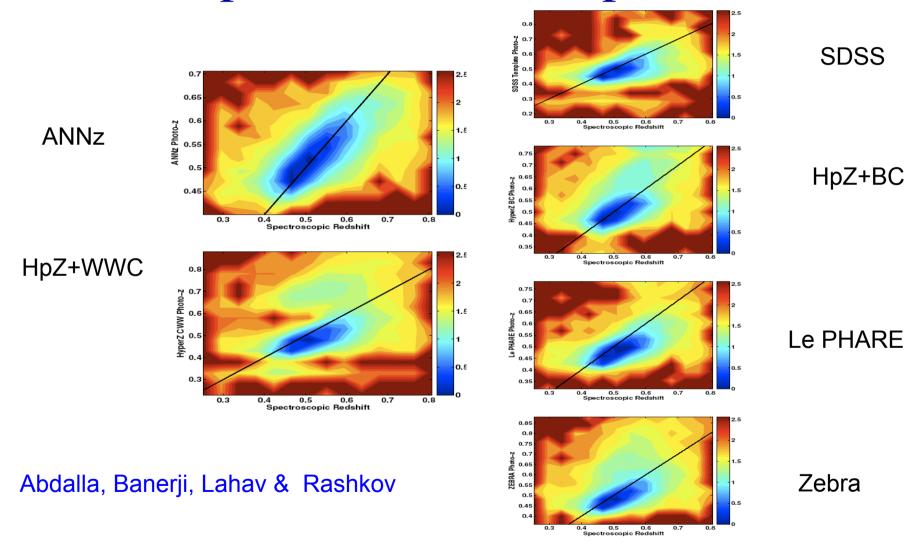
• Probe strong spectral features (4000 break)

• Difference in flux through filters as the galaxy is redshifted.


Bayesian Photo-z

$$p(C|z,T)$$
 likelihood
 $p(z,T|m_0)$ prior

Benitez 2000 (BPZ)


ANNz - Artificial Neural Network

Collister & Lahav 2004

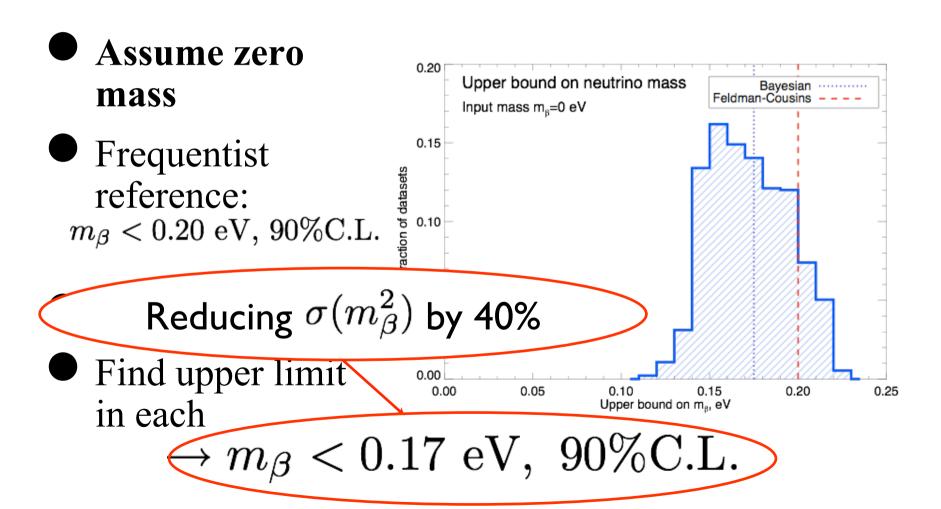
http://www.star.ucl.ac.uk/~lahav/annz.html

1.5M LRGs ("MegaZ") photo-z code comparison

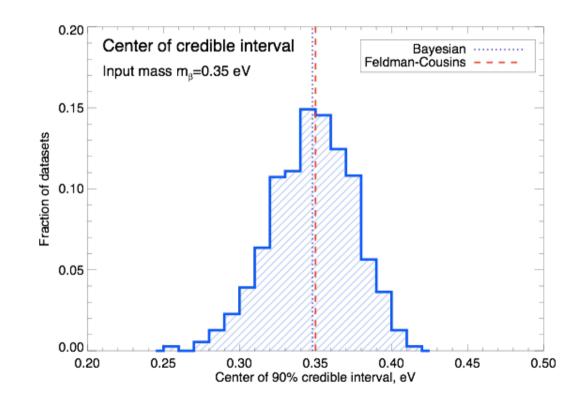
Cf. PHAT (Hildebrandt et al. 2010)

Example 3: Neutrino mass

KATRIN

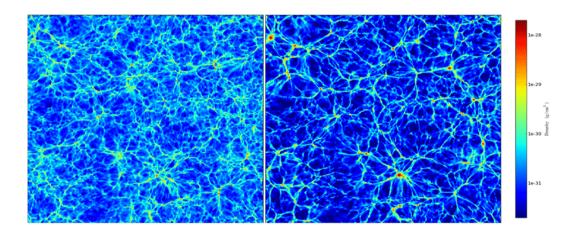

- Next generation tritium beta decay spectrometer
- Sensitivity
 mβ < 0.2 eV at 90%
 C.L.
- σ detection threshold at $m\beta = 0.35 \text{ eV}$
 - KATRIN Design
 Report Angrik et al.
 (2005)

Frequentist analysis!


www.fzk.de

1) Null result

2) Discovery potential

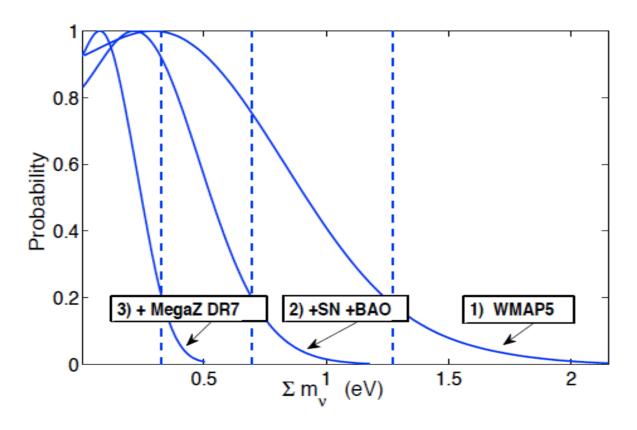

- Assume $m_{\beta} = 0.35 \text{ eV}$
- 1000 posteriors
- Recover input regardless of analysis

Neutrino mass from galaxy surveys

700,000 galaxies with ANNz photo-z within 3.3 (Gpc/h)³

0.05 eV < Total neutrino mass < 0.28 eV (95% CL)

BBC News


Neutrino 'ghost particle' sized up by astronomers

11:48 GMT, Tuesday, 22 June 2010 12:48 UK

Thomas, Abdalla & Lahav, PRL (2010)

Upper limits on total Neutrino mass

Total mass < 0.28 eV (95% CL)

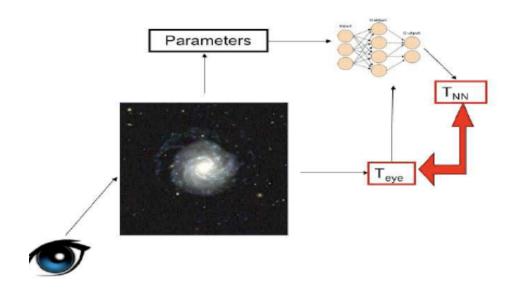
Thomas, Abdalla & Lahav, PRL (2010) 0911.5291

Example 4: galaxy shapes and classification

• One Million galaxies classified by 100,000 people!

Is the galaxy simply smooth and rounded, with no sign of a disk?

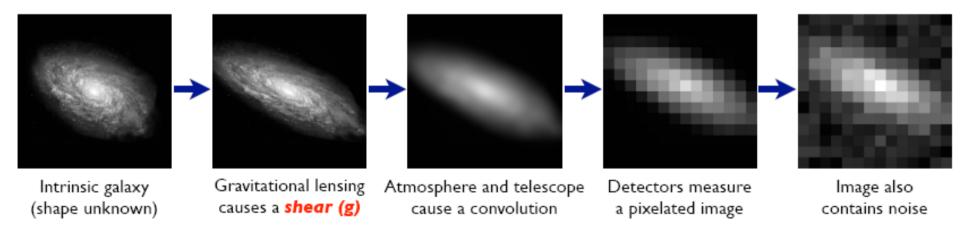
Smooth


Features or disk

Star or artifact

Need help?

Galaxy zoo and machine learning

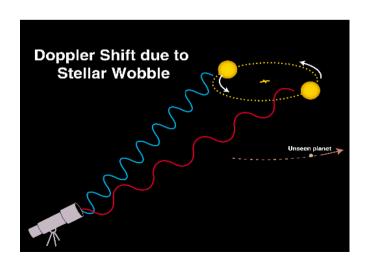


		GALAXY ZOO		
		Elliptical	Spiral	Star/Other
A	ELLIPTICAL	91%	0.08%	0.5%
\mathbf{N}	SPIRAL	0.1%	93%	0.2%
N	STAR/OTHER	0.3%	0.3%	96%

Cosmic shear measurement

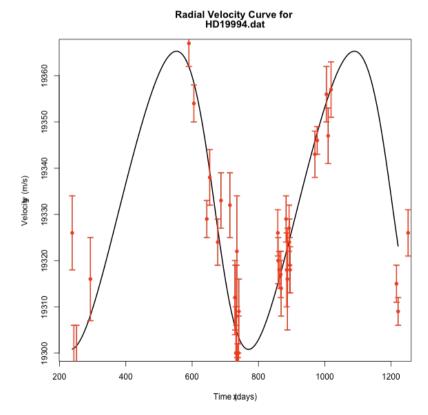
The Forward Process.

Galaxies: Intrinsic galaxy shapes to measured image:


GREAT08 (Bridle et al.); GREAT10 (Kitching et al.)

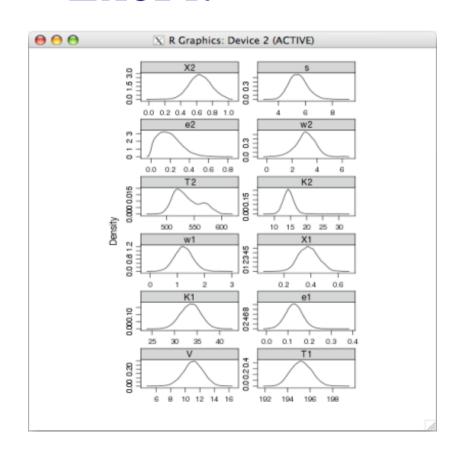
Example 5: Exo-planets

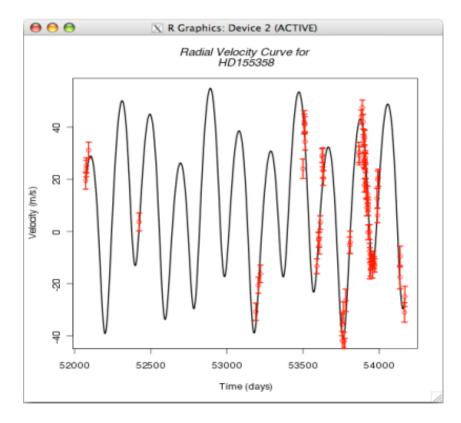
Modelling orbits of planets


(i) Given the wobble of the host star, is there evidence for 0,1,2,3,... planets?

(ii) What are the parameters and associated errors of each detected planet?

ExoFit: orbital parameters from radial velocity data

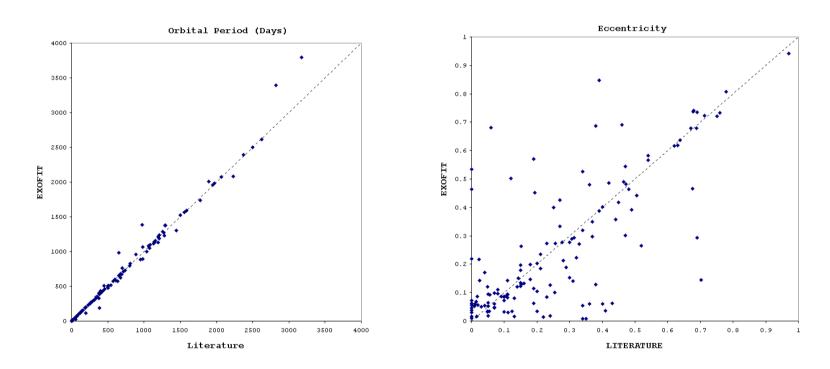

- Publically available
- Easy to use and fast
- Bayesian approach,
 with emphasis on priors,
 implemented by
 Markov Chain Monte
 Carlo (MCMC).



www.star.ucl.ac.uk/~lahav/exofit.html

Balan & Lahav (MNRAS, 2009)

HD155358: 2-planet search with ExoFit



Priors for 2-planet system

Para.	Prior	Mathematical Form	Min	Max
$V_{(ms^{-1})}$	Uniform	$V_{max} - V_{min}$	-2000	2000
$T_1(days)$	Jeffreys	$\frac{1}{T_1 \ln \left(\frac{T_1 \max}{T}\right)}$	0.2	15000
$K_1(ms^{-1})$	Mod. Jeffreys	$\frac{\frac{(K_1 + K_{10})^{-1}}{(K_1 + K_{10})^{-1}}}{\ln\left(\frac{K_{10} + K_{1max}}{K_{10}}\right)}$	0.0	2000
e_1	Uniform	1	0	1
ϖ_1	Uniform	$\frac{1}{2\pi}$	0	2π
χ1	Uniform	1"	0	1
$T_2(days)$	Jeffreys	$\frac{1}{T_2 \ln \left(\frac{T_2 max}{T_2 min}\right)}$	0.2	15000
$K_2(ms^{-1})$	Mod. Jeffreys	$\frac{(K_2+K_{20})^{-1}}{\ln(\frac{K_{20}+K_{2max}}{K_{20}})}$	0.0	2000
e2	Uniform	1	0	1
ϖ_2	Uniform	$\frac{1}{2\pi}$	0	2π
X2	Uniform	1	0	1
$s(ms^{-1})$	Mod. Jeffreys	$\frac{(s+s_0)^{-1}}{\ln\left(\frac{s_0+s_{max}}{s_0}\right)}$	0	2000

Comparison of ExoFit vs. Literature

From a new uniformly-derived catalogue of 200 exo-planets (Balan, Lever, Lahav, in preparation)

Summary

Five real-life examples:

Cosmological parameters

Neutrino mass

Photometric redshifts

Galaxy shapes and classification

Exo-planets

Future Challenges in Astro-Statistics

Further input much needed from statistics

- Model selection methodology
- MCMC machinery and extensions
- Detection of non-Gaussianity and shape finders
- Blind de-convolution (eg. PSF)
- Object classification
- Comparing simulations with data
- Visualisation
- VO technology