
Statistical challenges of global SUSY fits 

Recent developments:
Bridges, KC, RT et al [arXiv: 1011.4306]
Akrami et al [arXiv: 1011.4297]
Feroz, KC, RT et al [arXiv:1101.3296]
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2D scans

Roszkowski et al (2001)

Determining constraints on SUSY models is a multi-dimensional problem. Even in one of 
the simplest cases, the CMSSM, there are four 4 parameters (M0, M1/2, A0, tanβ) as well as 
SM parameters (e.g. Mtop, Mb) The traditional strategy in the field was to carry out “2D 
scans” by fixing the other relevant parameters to certain values. 
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Dependency on SM (nuisance) parameters

Mtop=170 GeV Mtop=180 GeV

There is also a strong dependence on the important SM parameters! 
(which are known only with limited accuracy)
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Solution: global fits

       5 

Carry out a simultaneous fit 
of all relevant SUSY and SM 
parameter to the experimental 
data/constraints.

Marginalize (= integrate) or 
maximise along the hidden 
dimensions to obtain  results 
that account for the multi-
dimensional nature of the 
problem.  
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Favoured regions:
likelihood-based approach

• Due to the weak nature of constraints, different scanning techniques and statistical 
methods will generally give different answers

• Likelihood-based methods: determine the best fit parameters by finding the 
minimum of -2Log(Likelihood) = χ2 

• Markov Chain Monte Carlo
and Minuit as “afterburner”

• Simulated annealing

• Genetic algorithm 

• Determine approximate confidence intervals: 
Local Δ(χ2) method θ

χ2

∆χ2 = 1
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Favoured regions:
likelihood-based approach

• Due to the weak nature of constraints, different scanning techniques and statistical 
methods will generally give different answers

• Likelihood-based methods: determine the best fit parameters by finding the 
minimum of -2Log(Likelihood) = χ2 

• Markov Chain Monte Carlo
and Minuit as “afterburner”

• Simulated annealing

• Genetic algorithm 

• Determine approximate confidence intervals: 
Local Δ(χ2) method θ

χ2

∆χ2 = 1

≈ 68% CL
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Favoured regions:
Bayesian approach

• Use the prior to define a metric on parameter space. 

• Bayesian methods: the best-fit has no special status. Focus on region of large 
posterior probability mass instead. 

• Markov Chain Monte Carlo (MCMC) 

• Nested sampling

• Hamiltonian MC 

• Determine posterior credible regions: 
e.g. symmetric interval around the 
mean containing 68% of samples 

SuperBayeS
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The Gaussian case 

• Life is easy (and boring) in Gaussianland: 

Profile likelihood Marginal posterior
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Marginalization vs profiling (maximising) 

Marginal posterior:

P (θ1|D) =
�

L(θ1, θ2)p(θ1, θ2)dθ2

Profile likelihood: 

L(θ1) = maxθ2L(θ1, θ2)

θ2

θ1

Best-fit 
(smallest χ2)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗
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Marginalization vs profiling (maximising) 

θ2

θ1

Best-fit 
(smallest χ2)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile 
likelihood

Best-fit Posterior 
mean

Marginal posterior

} Volume effect

Physical analogy:  (thanks to Tom Loredo) 

P ∝
�

p(θ)L(θ)dθ

Q =
�

cV (x)T (x)dVHeat: 

Posterior: 
Likelihood  = hottest hypothesis
Posterior = hypothesis with most heat
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RGE

Non-linear
numerical
function

via SoftSusy 2.0.18 
DarkSusy 5.0 

MICROMEGAS 2.2 
FeynHiggs  2.5.1 

Hdecay 3.102 

Constrained MSSM analysis pipeline 

4 CMSSM parameters 
θ = {m0, m1/2, A0, tanβ}

(fixing sign(μ) > 0)

4 SM “nuisance
parameters” 

Ψ={mt, mb,αS, αEM }

Observable
quantities

fi(θ ,Ψ)

CDM relic abundance
BR’s

EW observables
g-2

Higgs mass
sparticle spectrum

(gamma-ray, neutrino,
antimatter flux, direct 
detection x-section)

Data: 
Gaussian likelihoods 

for each of the Ψj 
(j=1...4)

Data: 
Gaussian likelihood

(CDM, EWO, g-2, b→sγ, ΔMBs)

other observables have 
only lower/upper limits

Physically acceptable?
EWSB, no tachyons, 

neutralino CDM 

YES

NO

Likelihood = 0
SCANNING ALGORITHM 

Joint likelihood function



• Implements the CMSSM, but can be easily extended to the general MSSM  

• New release (v 1.50) in June 2010: linked to SoftSusy 2.0.18, DarkSusy 5.0, 
MICROMEGAS 2.2, FeynHiggs  2.5.1, Hdecay 3.102.

• Includes up-to-date constraints from all observables, plotting routines, statistical 
analysis tools, posterior and profile likelihood plots. Fully parallelized, MPI-ready, 
user-friendly interface

• MCMC engine (Metropolis-Hastings, bank sampler), grid scan mode, multi-modal 
nested sampling MultiNest algorithm (Feroz & Hobson 2008) 
A full 8D scan now takes less than 2 days on 8 CPUs.

www.superbayes.org

http://www.superbayes.org
http://www.superbayes.org
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The nested sampling algorithm 
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Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where 〈·〉 denotes the expectation value with respect to the posterior)

〈m〉 ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

〈f(m)〉 ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

Feroz et al (2008), arxiv: 0807.4512, Trotta et al (2008), arxiv: 0809.3792 

(animation courtesy of David Parkinson)

X(λ) =
�
L(θ)>λ P (θ)dθ

An algorithm originally aimed primarily at the Bayesian 
evidence computation (Skilling, 2006):

P (d) =
�

dθL(θ)P (θ) =
� 1
0 X(λ)dλ

http://arxiv.org/abs/hep-ph/0602028
http://arxiv.org/abs/hep-ph/0602028
http://arxiv.org/abs/hep-ph/0602028
http://arxiv.org/abs/hep-ph/0602028
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The MultiNest algorithm
• MultiNest: a multi-modal implementation of nested sampling. Also an extremely 

efficient sampler for multi-modal likelihoods
Feroz & Hobson (2007), RT et al (2008), Feroz et al (2008)

Target Likelihood Sampled Likelihood 
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“log prior”

Δχ2

Both methods find a 
favoured low mass SUSY 
region: how constrained is 

it? 
The g-2 constraint is 

critical in robustly 
excluding TeV-scale 

masses in the frequentist 
approach 

No g-2

With
g-2

0907.4468 [hep-ph]

MasterCode
profile likelihood

SuperBayeS: profile likelihood

CMSSM today: Frequentist vs Bayesian
SuperBayeS: posterior

MasterCode
profile likelihood

Δχ2

2σ exclusion
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Bayesian results: prior dependency with present-
day constraints

“flat prior”
Uniform in M0,M1/2,A0,tanβ

“log prior”
Uniform in log(M0), log(M1/2), 

A0, tanβ

“naturalness prior”
Penalizes regions of parameter 

space that are “fine tuned”

0807.4512 [hep-ph] 0809.3792 [hep-ph] 0705.0487 [hep-ph]

Prior dependence of the Bayesian fits results from weak 
constraints on parameter space. Stronger assumptions (e.g. naturalness 

priors) lead to posteriors dominated by prior information (rather than data).
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ATLAS data will mitigate the prior 
dependency for the CMSSM

• Projected constraints from ATLAS, (dilepton 
and lepton+jets edges, 1 fb-1 luminosity)

Roszkowski, Ruiz & RT (2010, 0907.0594)

SuperBayeS
Flat prior

SuperBayeS
Log prior

M(l+l-) GeV

http://arxiv.org/abs/0907.0594
http://arxiv.org/abs/0907.0594
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Profile likelihood results: comparison
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• Akrami et al (0910.3950) adopted a genetic algorithm (GA) to map out the profile likelihood.

• This allows to find isolated spikes in the likelihood in the focus point region: 
is this something other frequentist fits might have missed?

overall best-fit
isolated local 

maxima

Genetic Algorithm
 profile likelihood

MultiNest 
profile likelihood - see later! 

MasterCode
profile likelihood

excluded at ~ 3σ
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Challenges of profile likelihood evaluation

• MCMC/MultiNest are not 
designed to find the best-fit 
point. Bayesian algorithms are 
designed to map out regions of 
significant posterior probability 
mass

• Even for a simple Gaussian toy 
model, this becomes difficult to 
do as the number of 
dimensions of the parameter 
space increases

• Profiling with vanilla MCMC 
or MultiNest scans has to be 
done with caution! 

Toy multinormal likelihood
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Vanilla MCMC
1 million samples
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Posterior pdf from MultiNest scans
• MultiNest is primarily aimed at evaluation of the posterior pdf. It does an excellent 

job even for multi-modal problems. 8D toy case (Feroz, KC, RT et al, [arXiv:1101.3296])

• The tolerance parameter (tol) determines the stopping criterium (based on the 
incremental change of the value of the local evidence). Lower tol gives a finer 
exploration around the peak, important for profile likelihood evaluation
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red: analytical           blue: MN, tol=0.5          black: MN, tol=0.0001
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Profile likelihood from MultiNest scans

• A fairly accurate profile likelihood can be obtained with MultiNest by tuning the 
tolerance (lower, tol=0.0001) and the number of live points (higher, nlive=20,000) 
(Feroz, KC, RT et al, [arXiv:1101.3296]), even for highly multi-modal distributions. 8D toy:
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• MultiNest scan with 20,000 live points (usually: 4,000) and tolerance 0.0001 (usually: 
0.5) results in 5.5 million likelihood evaluations (Akrami et al, GA: 3 million), and 
best-fit χ-square = 9.26 (Akrami et al, GA: 9.35). 
MultiNest finds a better best-fit + smoother contours than GA.

Profile likelihood from MultiNest

68%, 95% CL
68%, 95% CL

Profile likelihood MultiNest, tol=10-4

Merged log and flat priors scans
Profile likelihood 

Genetic algorithm

Akrami et al (2010)
Feroz, KC, RT et al (2011)
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Coverage properties of intervals

• Coverage of intervals is a frequentist property.

• Guaranteed when using e.g. Feldman-Cousins procedure to build intervals.

• Approximate confidence intervals are obtained via the Neyman construction with 
profile likelihood ratio as a test statistic. 

• From a Bayesian perspective, coverage properties of credible intervals (if desired) 
can be used to calibrate priors.

• Coverage studies are computationally expensive: 
(a) choose fiducial point in parameter space 
(b) generate pseudo-data 
(c) reconstruct credible/confidence interval 
(d) check whether fiducial point within/without interval.



Kyle Cranmer & Roberto Trotta 

“Instantaneous” inference with 
neural networks 

• Standard MCMC
(SuperBayeS v1.23, 2006 release) 
720 CPU days 

• MultiNest 
(SuperBayeS v1.5, 2010 release)
16 CPU days
speed-up factor: ~ 50

Simulated ATLAS data

m1/2 (GeV)

m
0 (G
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)

Bridges et al (2010)

68%, 95% contours
Black: SuperBayeS pdf

Blue: Neural Network
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“Instantaneous” inference with 
neural networks 

• Standard MCMC
(SuperBayeS v1.23, 2006 release) 
720 CPU days 

• MultiNest 
(SuperBayeS v1.5, 2010 release)
16 CPU days
speed-up factor: ~ 50

Simulated ATLAS data

• SuperBayeS+Neural Networks
(Bridges, Cranmer, Feroz, 
Hobson, Ruiz & RT, 1011.4306)
less than 1 CPU minute 
speed-up factor: 30’000

m1/2 (GeV)

m
0 (G

eV
)

Bridges et al (2010)

68%, 95% contours
Black: SuperBayeS pdf

Blue: Neural Network
true value

280 300 320
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http://arxiv.org/abs/1011.4306
http://arxiv.org/abs/1011.4306
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RGE

Non-linear
numerical
function

via SoftSusy 2.0.18 
DarkSusy 5.0 

MICROMEGAS 2.2 
FeynHiggs  2.5.1 

Hdecay 3.102 

Neural nets shortcuts

4 CMSSM parameters 
θ = {m0, m1/2, A0, tanβ}

(fixing sign(μ) > 0)

4 SM “nuisance
parameters” 

Ψ={mt, mb,αS, αEM }

Observable
quantities

fi(θ ,Ψ)

CDM relic abundance
BR’s

EW observables
g-2

Higgs mass
sparticle spectrum

(gamma-ray, neutrino,
antimatter flux, direct 
detection x-section)

Data: 
Gaussian likelihoods 

for each of the Ψj 
(j=1...4)

Data: 
Gaussian likelihood

(CDM, EWO, g-2, b→sγ, ΔMBs)

other observables have 
only lower/upper limits

Physically acceptable?
EWSB, no tachyons, 

neutralino CDM 

YES

NO

Likelihood = 0
SCANNING ALGORITHM 

Joint likelihood function

Classification net

Regression net
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Neural networks technology 
• We used a feed-forward multi-layer perceptron to “replace” SoftSusy in predicting 

the weak-scale masses from the CMSSM input parameters

• After training with a few 1000’s samples, the neural net achieved a correlation 
> 99.99%

Output layer 
(weak-scale m)

Input layer 
(CMSSM params)

Hidden layer

True mass (GeV) 
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Bridges, KC, 
RT et al (1011.4306)

http://arxiv.org/abs/1011.4306
http://arxiv.org/abs/1011.4306
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Coverage: are intervals what they say? 

• We did 10,000 reconstructions, each with 1 million samples. This would have taken 
1,100 CPU yrs using standard methods. Neural network speed-up is dramatic, of 
order 104.

• Test case: use weak-scale masses as input, with Gaussian likelihood. 
Coverage is exact (within noise), as expected:

Profile likelihood Bayesian 
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Coverage: are intervals what they say? 

• Mapping back constraints to the CMSSM parameters, we find substantial over-
coverage for both Bayesian and profile likelihood intervals:

Profile likelihood Bayesian 
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Origin of over-coverage in the CMSSM

• The CMSSM prior introduces “physicality” boundaries in the weak-scale masses 
space. As a consequence, the distribution of -2 ln(λ) is not well approximated by χ2 

and Wilks’ theorem does not apply. 

m
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Bridges et al (2010)

68%, 95% contours
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Red: ATLAS likelihood

true value

CMSSM, µ>0
ATLAS SU3 point

m
q̃
−

m
χ

0 1
(G

eV
)

0 100 200 300200

300

400

500

600

700

800

−2 ln[λ(m0)]

Bridges et al (2010)

0 1 2 3 40

1

2

3

4

5

6

−2 ln[λ(m0)]

Bridges et al (2010)

0 1 2 3 40

1

2

3

4

5

6

Wilks
Weak scale toy 

Wilks
CMSSM 
params 

Unphysical

Ph
ys

ic
al

Bridges, KC, RT et al (1011.4306)

http://arxiv.org/abs/1011.4306
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Coverage from future direct detection 
ton-scale experiments

• Similar study by Akrami et al (1011.4297), investigating the CMSSM coverage from 
future ton-scale direct detection experiments (100 realizations):

“Good” 
realization

“Unlucky” 
realizationTrue value
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Under-coverage from future direct detection 
ton-scale experiments

• Akrami et al (1011.4297) find significant under-coverage (i.e., too short intervals) in 
many cases.  They claim this to be an effect due to effective priors + insufficient 
sampling of MultiNest.

Flat priors Log priors
Benchmark 

points

Samples 
from the 

prior

Samples 
from the 

prior
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Conclusions

• A rigorous assessment of the statistical performance of various approaches/
algorithms is only just beginning.

• Coverage studies (LHC, direct detection) find significant over/under-coverage of 
both Frequentist and Bayesian intervals. Origin: over-simplified likelihood functions 
(LHC) and ‘hole’ structure of parameter space.

• MultiNest can be tuned to perform profile likelihood scans (at a higher 
computational cost). “Vanilla” MultiNest scanning parameters (perfectly adequate for 
Bayesian inference) are NOT sufficient for robust profile likelihood estimation. This 
requires lower tolerance and higher number of samples (~ 10 times more).

• Future work: MultiNest to identify local modes + e.g. Minuit as afterburner to polish 
the quality of the maximum likelihood point. 



Thank you!



Coda: 
is statistics good for your health?

xkcd.com


