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Abstract
The statistical methods used by the ATLAS Collaboration for setting upper
limits or establishing a discovery are reviewed, as they are fundamental in-
gredients in the search for new phenomena. The analyses published so far
adopted different approaches, choosing a frequentist or a Bayesian or a hybrid
frequentist-Bayesian method to perform a search for new physics and set up-
per limits. In this note, after the introduction of the necessary basic concepts
of statistical hypothesis testing, a few recommendations are made about the
preferred approaches to be followed in future analyses.

1 Introduction
This note summarizes the statistical methods used so far by the ATLAS Collaboration for setting upper
limits or establishing a discovery, and includes the recommended approaches for future analyses, as
recently agreed in the context of the ATLAS Statistics Forum. The recommendations aim at achieving
a better uniformity across different physics analyses and their ultimate goal is to improve the sensitivity
to new phenomena, while keeping robustness as a fundamental request. The best way to be safe against
false discoveries is to compare the results obtained using at least two different methods, at least when
one is very near the “five sigma” threshold which is required in high-energy physics (HEP) to claim a
discovery. One recommended method is explained in this paper (section 4).

We focus here on the searches for some type of “signal” in a sample of events dominated by other
(“background”) physical sources. The events are the output of a particle detector, filtered by reconstruc-
tion algorithms which compute high-level features like an “electron” or a “jet”. Large use of simulated
samples is required to tune calibrations, characterize the event reconstruction, and compare the outcome
of an experiment with the theoretical models.

A typical simulation consists of few different steps. First, one needs to simulate the result of the
primary particle interaction with the help of an “event generator”. Usually, only one specific process
of interest is considered (e.g. Higgs production with a specific channel) and saved to disk, allowing the
physicist to study a well defined type of “signal” at the time. Different Monte Carlo (MC) productions are
then organized to obtain a variegate set of processes which, depending on the analysis, can be considered
either signal or background. The next step is to simulate the effects of the passage of the produced
particles (and their decay products) through the detector. This requires the knowledge of the ways energy
is deposited in each material and defines the “tracking” of the simulated particles up to the point (if any)
in which they stop. Finally, the detector response is simulated: for each energy deposition into an active
material, another MC process produces the electronic signal. The latter is processed in a way which
closely follows the design of the front-end electronics, obtaining the simulated detector output in the
same format as the data coming from the real detector.

Statistical uncertainties arise from fluctuations in the energy deposition in the active materials and
from the electronic noise. Systematics due to the limited knowledge of the real detector performance and
to the details of the offline reconstruction also contribute to the final uncertainty and need to be addressed
case by case. Finally, theoretical uncertainties in the physical models need also to be accounted for. In
general, the differences among the event generators cannot be treated as standard deviations, because one
usually have just two or three available generators. Hence they should not be summed in quadrature but
treated separately.
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Section 2 summarizes the statistical aspects relevant to our problems and defines some notation.
The methods applied in past ATLAS publications are reviewed in section 3, while section 4 focuses on
the methods which can be used in future analyses.

2 Notation
In HEP we deal with hypothesis testing when making inferences about the “true physical model”: one
has to take a decision (e.g. exclusion, discovery) given the experimental data. In the classical approach
proposed by Fisher, one may decide to reject the hypothesis if the p-value, which is the probability of
observing a result at least as extreme as the test statistic1 in the assumption that the null hypothesis H0
is true, is lower than some threshold. In the search for new phenomena, the p-value is interpreted as the
probability to observe at least as many events as the outcome of our experiment in the hypothesis of no
new physics. Alternatively, one may convert the p-value into the significance Z, which is the number of
Gaussian standard deviations which correspond to the same right-tail probability2: Z = Φ−1(1 − p). The
function Φ−1(x) =

√
2 erf−1(2x − 1) is the quantile of the normal distribution, expressed in terms of the

inverse error function.

A p-value threshold of 0.05 corresponds to Z = 1.64 and is commonly used in HEP for setting
upper limits (or one-sided confidence limits) with 95% confidence level or posterior probability. On the
other hand, it is customary to require at least a “five sigma” level Z ≥ 5 (i.e. p ≤ 2.87 × 10−7) in order to
claim for a discovery of a new phenomenon (if 3 ≤ Z ≤ 5 one usually says only that the data suggest the
evidence for something new). It is also common to quantify the sensitivity of an experiment by reporting
the expected significance under the assumption of different hypotheses.

Another possible approach, suggested by Neyman and Pearson, is to compare two alternative
hypotheses (when the null hypothesis is the main focus of the analysis, the alternative H1 can be defined
as the negation of H0). In this case, two figures of merit are to be taken into account:

– the size3 α of the test, which is the probability of incorrectly rejecting H0 in favour of H1 when H0
is true. α is also the false positive (or “type I error”) rate;

– the power of the test (1 − β), which is the probability of correctly rejecting H0 in favour of H1
when H0 is false. β is the probability of failing to reject a false hypothesis, i.e. the false negative
(or “type II error”) rate.

In the Bayesian approach, one always compares two (or more) different hypotheses. In order
to take the decision among the alternatives, one can look at the posterior odds or at the ratio of the
marginal likelihoods (or “Bayes’ factor”). The former are always well defined and take into account the
information accumulated with the performed experiment in the light of the existing prior information,
whereas the latter is often very difficult to compute and may be even ill-defined in some problem (for
example when comparing two models in which one of the priors is improper), although it does not depend
on the prior knowledge about the hypothesis under consideration. The decision is taken in favour of the
hypothesis which maximizes the chosen ratio, though the particular value of the latter can can suggest a
weak, mild or strong preference for that hypothesis.

In this note, we address two problems, exclusion and discovery, for which the notation is different
and sometimes misleading, as illustrated below. For this reason, in the rest of the paper we will speak
about the “signal plus background” (sig+bkg or Hs+b) hypothesis and about the “background only” (bkg
or Hb) hypothesis, without saying what is the null hypothesis.

1A test statistic is a function of the sample which is considered as a numerical summary of the data that can be used to
perform a hypothesis test.

2Here we consider a one-sided test, in which we look for an excess over the expected number of events due to the background
processes.

3α is also known as “significance level” of the test. We do not use this terminology to avoid confusion with the significance
Z defined above.
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In the discovery problem, the null hypothesis H0 describes the background only, while the alter-
native H1 describes signal plus background. In the classical approach, one first requires that the p-value
of H0 is found below the given threshold (in HEP one requires p ≤ 2.87 × 10−7). If this condition is
satisfied, one looks for an alternative hypothesis which can explain well the data4.

In the exclusion problem, the situation is reversed: H0 describes signal plus background while the
alternative hypothesis H1 describes the background only. In the classical approach, one just makes use
of the null hypothesis to set the upper limit, though this will exclude with probability ≈ α parameters
values for which one has little sensitivity, obtaining “lucky” results. Historically, this problem has been
first addressed in the HEP community by the CLs method [1,2], whose approach is to reject the sig+bkg
hypothesis if CLs = ps+b/(1 − pb) ≤ α. CLs is a ratio of p-values which is commonly use in HEP,
and one can find a probabilistic interpretation if certain asymptotic conditions are met [3]. Another
possibility being discussed by ATLAS physicists is to construct a Power Constrained upper Limit (PCL)
by requiring that two conditions hold at the same time: (1) the p-value is lower than the chosen threshold,
and (2) the power of the test is larger than a minimum value chosen in advance.

3 Methods used in past ATLAS publications
So far, different ATLAS analyses used different approaches. Converging takes time and is not always
possible nor necessarily good, the main reason probably being that different uncertainties are addressed
in different ways. Whenever possible, the background is estimated from data. Still, one has to extrapolate
to the signal region and this requires the knowledge of the shape, hence depends on the simulation. In
addition, in many cases signal and control regions should be treated at the same time: systematics affect
both signal and background and often it is impossible to find a signal free region. Finally, in most cases
the background is composed by several contributions which are independently simulated but are not
really independent: systematic effects act on all of them, making things more and more complicate.

Accounting simultaneously for systematic effects on different components is now possible thanks
to HistFactory, a ROOT [4] tool for a coherent treatment of systematics based on RooFit/RooStats [5],
initially developed by K. Cranmer and A. Shibata. First used in the top group [6], HistFactory is now
being adopted also by other ATLAS groups.

Searches for new physics (for example, Higgs searches) often start by looking for a “bump” in
a distribution which is dominated by the background. When the location of the bump is not know, the
search is typically repeated in different windows, decreasing the sensitivity [7, 8]. In the ATLAS dijet
resonance search [9], a tool for systematic scans with different methods has been applied: BumpHunter,
developed G. Choudalakis [10]. The program makes a brute force scan for all possible bump locations
and widths, achieving a very good sensitivity, and is appropriate when the bump position and/or width
are not known.

A hybrid Bayesian-frequentist approach has been used by the LEP and Tevatron Higgs working
groups and is also used in ATLAS Higgs searches. All or some nuisance parameters (modeling system-
atic effects) are treated in the Bayesian way: a prior is defined for each parameter which is integrated
over. On the other hand, for the parameters of interest the frequentist approach is followed, comput-
ing p-values and constructing confidence intervals. HistFactory can be used also with this approach,
supporting normal, Gamma and log-normal posteriors for nuisance parameters.

In the Higgs combination chapter in the ATLAS “CSC book” [11], the statistical combination
of SM Higgs searches in 4 different channels (using MC data) was performed with RooFit/RooStats in
the frequentist approach: systematics have been incorporated by profile likelihood. Each search was
performed with a fixed mass and repeated for different values, and the limits have been interpolated.

4It might happen that more than a single hypothesis can explain the data. In this case there is no conventionally agreed
behaviour. A reasonable approach would be to pick up the one with the best agreement with the data, perhaps using a Bayesian
approach to assess how strong the preference is.
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Many lessons have been learned and the statistical treatment has been refined since then, culminating in
the recommended frequentist method explained in section 4.1 below.

4 Present and future analyses
If possible, one may consider using more than a single approach in searches for new phenomena: if they
agree, one gains confidence in the result; if they disagree, one must understand why (possibly finding
flaws in the analysis). This becomes expecially important when the obtained sensitivity is close to the
minimum limit for discovery. Section 4.1 below summarizes the recently proposed frequentist approach
which is being recommended for all ATLAS analyses. A possibility is to test the result of the frequentist
approach with a Bayesian method. The current dicussion about the Bayesian approach is summarized in
section 4.2, but at present there is no official ATLAS recommendation about it.

4.1 Recommended frequentist approach
The problem is formulated by stating that the expected number of events in bin i is the sum E(ni) = µsi+bi

of two separate contributions, a background expectation of bi events and a signal contribution given by
the product of an intensity parameter µ with the expected number of signal events si. For discovery, we
test the background-only hypothesis µ = 0. If there is no significant evidence against such hypothesis,
we set an upper limit on the magnitude of the intensity parameter.

The Reader will find a full treatment of the recommended method in Ref. [12]. Very shortly, the
profile likelihood is used to construct different statistics for testing the alternative bkg and sig+bkg hy-
potheses. In the asymptotic regime, confidence intervals can be found analytically using such statistics,
and the resulting expressions can be used to define approximate intervals for finite samples. Asymp-
totically, the maximum likelihood estimate µ̂ is Gaussian distributed about the true value with standard
deviation σ which can be found numerically by means of the “Asimov dataset”, defined as the MC
sample which, when used to estimate all parameters, gives their true values. In case of exclusion, the
approximate upper limit is µup/low = µ̂ ± σAΦ−1(1 − α/2). In case of discovery, in which one assumes
µ = 1, the median significance is

med[Z0|1] =
√

2[(s + b) ln(1 + s/b) − s] , (1)

which is the recommended formula by the ATLAS Statistics Forum when estimating the sensitivity for
discovery [12].

4.2 Current discussions about the Bayesian approach
In the Bayesian approach, the full solution to an inference problem about the “true physical model”,
which is responsible for the outcome of an experiment, is provided by the posterior probability dis-
tribution of the parameter of interest. Typicallly, there are several nuisance parameters which model
systematic effects or uninteresting degrees of freedom. In order to obtain the marginal posterior proba-
bility distribution as a function only of the parameter of interest, one has to integrate over all nuisance
parameters. This marginalization procedure contrasts with the frequentist approach based on the profile
likelihood, in which the nuisance parameters are fixed at their “best” values.

Prior probabilities need to be specified for all parameters and should model our knowledge about
the effects which they refer to. Quite often, one does not want to encode a precise model into the prior or
does not assume any relevant prior information. In this case, uniform densities are commonly preferred
for computational reasons, but they are often misinterpreted as “non-informative” priors, which is not the
case. For example, a uniform density is no more flat, when considered as a function of the logarithm of
the given parameter. When attempting to make an “objective” inference, least-informative priors should
be used instead. They can be defined, as in the case of the reference priors, as as the ones which maximize
the amount of missing information [13]. Reference priors are invariant under reparametrization, are
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known (and often identical to Jeffreys’ priors) for most common one-dimensional problems in HEP, and
can also be used to test the dependence of the result from the choice of the prior [14, 15].

When dealing with discovery or exclusion in the Bayesian approach, one has to make a choice be-
tween two alternative hypotheses: background only (Hb) and signal plus background (Hs+b). Comparing
the posterior probabilities is the best way to account for the whole amount of information provided by
the experiment in the light of the previous knowledge. Although values of O(1000) for the posterior odds
are interpreted as a strong preference, no widespread agreement exists in the HEP community about a
minimum threshold for claiming a discovery.5 In order to check the impact of the assumptions made
before performing the experiment on the final decision, it is also useful to compare the posterior odds
against the prior odds (defined as the ratio of prior probabilities for Hb and Hs+b, whenever this is well
defined).

5 Summary
This note summarizes the statistical approaches used in the past ATLAS analyses and the current ongoing
efforts to provide uniformity of statistical treatment across all analyses. Guidelines for estimating the
sensitivity with a frequentist method based on profile likelihood ratio have been recently formalized [12].
In this approach, which is recommended for all ATLAS analyses, all nuisance parameters are fixed at
their best values and a single MC sample (the Asimov dataset) can be used to find the numerical values
of the interesting statistics.

The Bayesian approach can also be considered in the analysis, although no official ATLAS rec-
ommendation has been made yet about the best method. In general, the prior densities should be chosen
in the way which best models our prior knowledge of the model. Whenever one wants to minimize the
impact of the choice of the prior on the result, one should be aware that flat priors are to be considered
informative. On the other hand, least-informative priors can be defined for all commong HEP problems
and have very appealing properties. In the Bayesian approach, the treatment of systematics is differ-
ent from the recommended frequentist method, because the whole range of each nuisance parameter is
considered in the marginalization. Hence, the comparison between the two approaches may be helpful,
expecially near the sensitivity threshold for discovery.
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