Unfolding in ALICE

Jan Fiete Grosse-Oetringhaus, CERN for the ALICE collaboration

PHYSTAT 2011
CERN, January 2011
Content

• Unfolding methods used in ALICE

• Applications of unfolding in ALICE
 – Observations, Issues and remarks
Unfolding Methods

- χ^2-Minimization with regularization (only 1D)
 \[
 \chi^2(T^*) = \sum_m \left(\frac{M_m^* - \sum_t R_{mt} T_t^*}{e_m} \right)^2 + \beta R(T^*)
 \]
 \[
 R(T) = \sum_t (a_t)^2
 \]
 \[
 \beta \text{ weight}
 \]

- Available regularizations
 - Mostly used: linear and constant
 - $a_t = \frac{T_t'}{\sqrt{T_t}} = \frac{T_t - T_{t-1}}{\sqrt{T_t}}$ (prefer constant)
 - $a_t = \frac{T_t''}{\sqrt{T_t}} = \frac{T_{t-1} + 2T_t - T_{t+1}}{\sqrt{T_t}}$ (prefer linear least curvature)
 - $a_t = \frac{\hat{T}_t''}{\sqrt{\hat{T}_t}} = \ln T_t$ (prefer exp)
 - $R(T) = \sum_t T_t \ln \frac{T_t}{\varepsilon_t}$ (reduced cross-entropy)

- Implementation uses Minuit, Migrad
 - Uncertainties from Minuit
Unfolding Methods (2)

• Iterative Bayesian Unfolding (1D + nD)

\[
\tilde{R}_{tm} = \frac{R_{mt}P_t}{\sum_{t'} R_{mt}P_{t'}} \quad U_t = \sum_m \tilde{R}_{tm} M_m
\]

d‘Agostini

• Optionally smoothing can be applied

\[
\hat{U}_t = (1-\alpha)U_t + \frac{\alpha}{3} (U_{t-1} + U_t + U_{t+1})
\]

• Uncertainty on unfolded distribution by randomization of input spectrum
 – Poisson distribution used per bin
Unfolding Methods (3)

- Unfolding methods part of the software framework
 - Main interface function (for 1D case):
 Unfold(TH2* correlation, TH1* efficiency, TH1* measured, TH1* initialConditions, TH1* result)
 - nD case uses THnSparse

- Functions to evaluate bias \(b_t \) due to regularization

\[
b_t = \sum_m \frac{\partial T_t}{\partial M_m} ((RT)_m - M_m)
\]

- Derivate calculated numerically

\[
\frac{\partial T_t}{\partial M_m} = \frac{1}{6d} \left[8 \left(f \left(\frac{d}{2} \right) - f \left(-\frac{d}{2} \right) \right) - (f(d) - f(-d)) \right]
\]

\[
f(x) = T_t(M | M_m = M_m + x\sqrt{M_m})
\]

(see e.g. Cowan)
Example: Evaluate Regularization Weight with MC

- Cooking down the consistency of the unfolded solution with the MC to one number is tricky
 - Different regions, different qualitative shape
Applications

- Multiplicity distribution
 - Efficiency ~ 70% (inactive modules in pixel detector due to cooling issues) → far off the diagonal
 - Significant spread in response matrix → wide correlations in unfolded spectrum

- p_T spectrum
 - Shift is 2-4% for 20-30 GeV
 - Unfolding needed, response matrix not very wide
Applications (2)

- Jet spectrum
 - Wide response matrix $\sigma \sim 20\%$
 - Corrections to full (charged+neutral) jet \rightarrow significant shift because all neutrals missing (1/3)
 - Caveat: MC simulations usually done in p_T,hard bins
 - Jet yield at low $p_T \gg$ MC at low p_T
Example Issue

- Observation: nice hump in unfolded distribution (which got people immediately excited)
- Usual cross-checks \rightarrow independent of
 - Regularization scheme
 - Unfolding method
- Forcing the distribution to be exponential
 - Moves the structure to the residuals
 - However, in fewer bins and (visually) much less significant
- Uncertainties of unfolded spectrum and wide response matrix can enhance fluctuations in the data significantly
- Slope change visible in measured data \rightarrow transition gets spread out by regularization
Systematic Uncertainties

- From the unfolding procedure
 - Bias
 - Some fluctuations (1-5%) remain
 - Use MC to get a feeling
- Uncertainties are correlated between the bins
- Due to the response matrix
 - Uncertainties on the response matrix "propagate through" the unfolding into the unfolded distribution
 - Create different response matrices resembling the uncertainty
 - E.g. detector efficiency uncertainty of 1% \rightarrow Create three response matrices with -1%, 0, +1% efficiency w.r.t. nominal
 - Use difference in unfolded distribution as systematic uncertainty \rightarrow tricky because overlaid by "typical" fluctuations, small effects cannot be disentangled
Summary

- ALICE uses unfolding (up to now) for multiplicity distribution, p_T spectrum and jet spectrum
- The ALICE software framework provides
 - χ^2-minimization with regularization
 - Iterative Bayesian unfolding
- Unfolding usually requires a lot of tuning
- Systematic uncertainties sometimes tricky
- Uncertainties on unfolded distributions are always understood (by others) as single bin uncertainties
 - Can we invent a nice way to visualize that this is not the case?

Thanks for help with preparing this talk to Christian Klein-Boesing, Jan Rak

Unfolding tutorial (introductory slides, exercises and solutions):
www.cern.ch/jgrosseo/permanent/unfolding
(prepared for a Helmholtz power week)
Feel free to use it!