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Abstract
The unfolding techniques used by the CMS collaboration on the 2010 data
analyses are presented. Each method is discussed on the basis of an experi-
mental measurement. The main focus is on studying the sensitivity to different
models used in the determination of the response matrix and the propagation
of statistical errors.

1 Unfolding of experimental distributions
In order to allow a direct comparison of experimental measurements with theoretical predictions, the
measurements must be unfolded for detector effects. This also permits the direct comparison of dis-
tributions from different experiments without knowledge of the detector response for each experiment.
Moreover, the automated tuning of Monte Carlo generators using multiple measurements is greatly fa-
cilitated using unfolded data. In principle the measurements could be presented without corrections for
detector effects together with a detector response matrix. The smearing of the theory distribution with a
published response matrix for each single measurement and each experiment is far more complicated in
Monte Carlo tuning efforts.

The measurements discussed here are based on data collected in proton-proton collisions with the
Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). A detailed descrip-
tion of the CMS detector can be found elsewhere [1]. The detector response matrix R in the unfolding
procedure is usually derived using simulated Monte Carlo (MC) samples. The CMS detector response
is derived via simulation based on GEANT4 [2]. The inversion of the response matrix can lead to un-
acceptable solutions, since small statistical fluctuations can lead to large effects in the solution. Even
negative entries in the unfolded distribution are possible. This oscillating behaviour can be reduced by
imposing the requirement that the true distribution is smooth. This smoothing procedure is known as
regularization. The regularized unfolding methods used and investigated by CMS are iterative Bayesian
unfolding [3], the SVD method [4] and Tikhonov regularization [5].

2 Iterative Unfolding: Charged Particle Multiplicities
The iterative Bayesian unfolding method is used in the measurement of the charged particle multiplicities
[6]. The observed charged multiplicity O = (O1, . . . , ON ) will in general be different from the true
multiplicity T = (T1, . . . , TM ) due to track reconstruction inefficiencies, the presence of secondary
particles and decay products of long-lived hadrons. In this method the inversion is done in a stepwise
iterative procedure. The unfolded distribution for the iteration step k is:

T
(k)
j =

∑
i

RijT
(k−1)
j∑

sRilT
(k−1)
s

·Oi. (1)

After each iteration k the χ2 between T (k) and T (k−1) is calculated. The procedure is stopped once the
χ2 converges and a stable solution T is found. The response matrix R is derived from samples generated
with PYTHIA6 [7] with the tune D6T. It is checked that the final solution T does not depend on initial
ansatz for the true distribution, using in one case a flat distribution and in the other case the MC gen-
erator level distribution. In a second step the robustness of the unfolding procedure is tested, using the
PYTHIA6 DW and a PHOJET [8] response matrix to unfold pseudodata generated by PYTHIA6 tune D6T.
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The observed differences shown in Fig. 1 are small over a large range, for higher multiplicity bins they
are dominated by statistical fluctuations.

CMS simulation 0.9 TeV

Fig. 1: The robustness of the unfolding procedure, unfolding PYTHIA6 D6T pseudodata distribution of the charged
particle multiplicity n with the PYTHIA6 DW response matrix. σsyst represents the relative difference between the
unfolded result and MC thruth.

The covariance matrix of the unfolded spectrum is derived using a resampling technique. As
shown in Fig. 2 the statistical errors are very dependent on the number of iterations. The errors increase
as a function of the iterations, while the statistical bias decreases. For a small number of iterations the
errors are smaller than

√
N , where N is the number of entries.

CMS simulation 0.9 TeV
CMS simulation 7 TeV

Fig. 2: The dependence of the relative statistical errors of the charged multiplicity spectrum on the number of
iterations in the unfolding. The pseudodata is simulated with PYTHIA6 at

√
s = 900 GeV (left) and

√
s = 7 TeV

(right).

3 SVD Unfolding: Hadronic Event Shapes
The SVD method is a special implementation of the Tikhonov regularization method, based on the sin-
gular value decomposition of the response matrix. The regularization method works as low-pass filter
and suppresses small singular values, which would lead to oscillating behaviour. This method is used
in the measurement of hadronic event-shape variables in 7 TeV proton-proton jet data [9]. The variable
which we will use in the following is the central transverse thrust, which is defined as

τ⊥,C ≡ 1−max
n̂T

∑
i |~p⊥,i · n̂T|∑

i p⊥,i
, (2)

where p⊥,i are the jet transverse momenta. Well balanced dijet events have low thrust values close to 0,
spherical multijet events have high values. The measurement is performed in several bins of the leading
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jet transverse momentum p⊥,1. The unfolded measured distributions are compared to predictions from
the MC generators PYTHIA6, HERWIG++ [10], ALPGEN [11], MADGRAPH [12] and PYTHIA8 [13]. The
measurement can be used in further tuning of MC generators.

The jet energy and jet position resolutions of the detector distort the event-shape distributions.
Especially in the lower range of event shape values the off-diagonal elements of the response matrix are
sizable (20-30%); only for higher event-shape values the diagonal element is around 90%. The response
matrix is determined using simulated PYTHIA6 D6T QCD events. The consistency between the unfolded
pseudodata distribution and the MC generator level distribution is checked for each generator using in all
cases the PYTHIA6 D6T response matrix. Fig. 3 shows that for all other generators a good closure can
be observed. The regularization parameter is chosen such that the χ2 value between the unfolded and the
generator level distribution is minimal (In this test we consider all generators but PYTHIA6). The full
covariance matrix is used in the χ2 calculation.
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Fig. 3: The closure of the SVD unfolding procedure for the central transverse thrust distribution for HERWIG++
(left), MADGRAPH (middle) and ALPGEN (right) pseudodata. The ratios show the deviations from the generator
level distribution.

Unfolding the data with a response matrix determined from MADGRAPH instead of PYTHIA6
gives consistent results. We check that no preference for one of the generators is introduced by the un-
folding procedure. In a first step the χ2 between the simulated pseudodata and the data distribution prior
to unfolding is calculated. These χ2 values are compared to χ2 values between the generator level dis-
tributions and the data distributions after unfolding. The ordering is the same before and after unfolding
and the values are similar. The iterative Bayesian unfolding is applied as a further cross-check. The
resulting unfolded distribution agrees within 1% with the distribution of the SVD unfolding.

The covariance matrix of the SVD method is non diagonal with large bin-to-bin correlations in the
errors (Fig. 4, left). The statistical error of a bin i is taken as the square root of corresponding diagonal
element of the covariance matrix

√
Cii. As illustrated in Fig. 4, right using PYTHIA6 pseudodata, the

relative statistical errors prior to unfolding are for some regularization choices bigger than the relative
statistical errors after the unfolding for almost all bins. With stronger regularization (small regularization
parameter, e.g. Reg. 7), the errors can be smaller than for the raw data. The correlation between the bins
of the unfolded distribution is bigger and the diagonal element of the covariance matrix smaller. In those
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Fig. 4: The covariance matrix after unfolding using as regularization value 7 (left). Comparison of the relative
statistical errors prior to unfolding and after the unfolding using several strengths of regularization (right). In both
cases PYTHIA6 has been used to generate the pseudodata.

cases the statistical error is smaller than
√
N , where N is the bin entry in these bins after unfolding the

distributions. For small regularization (higher regularization value. e.g Reg. 13) the errors approximate
the errors of the matrix inversion and can be sizable.

The jet energy resolution uncertainty of 10% is treated in the measurement as uncertainty in the
response matrix, i.e. the unfolding is repeated with a new response matrix determined from PYTHIA6
D6T with jet energies smeared by an additional 10%.

4 Tikhonov Regularization: Inclusive Jet Cross Section
The Tikhonov regularization method is investigated in the context of the inclusive jet cross section mea-
surement. The true spectrum is distorted by the finite detector energy resolution. The inclusive jet
transverse momentum spectrum is a steeply falling distribution covering a range of many orders of mag-
nitude and thus more challenging than e.g. event shape distributions. The determination of the response
matrix is difficult, since a huge phase space with dramatically different cross sections needs to be covered
with sufficient statistics in all corners. A further complication is the fact that one particle level jet might
be reconstructed as two jets in the detector or vice versa. The response matrix is thus calculated using a
theory curve and smearing it with measured jet resolution functions. Cross-checks on Monte Carlo show
that the solution of the Tikhonov method also depends on the choice of the number of bins for theory and
data. The solution is found using the quasi-optimal approach [14]. In this approach the regularization
parameter τ is varied in fine steps starting with larger parameters τ . For each step k the maximum devi-
ation between the contents of all bins j of the unfolded histograms ∆(τ) = max

j
|Oj(τk) − Oj(τk−1)|

is determined. Minima of ∆ are stable solutions; the first minima depends on starting conditions of the
iteration procedure and should be disregarded. In general the deepest minimum is preferred as solution,
since it corresponds to the most stable solution as function of the regularization parameter τ .

The solution of the method shows a good closure using the deepest minimum. The effective
input unfolding correction factor is correctly reproduced by this solution. The error propagation of the
regularized solution by the matrix inversion can lead to large estimates of the statistical uncertainties
as shown in Fig. 5. In data the inclusive jet spectrum uses several jet trigger streams, involving also
heavily prescaled low pT triggers. This can lead to artefacts in the unfolded distribution and the error
propagation. The Tikhonov regularization is also used in the measurement of jet shapes.

5 Summary and Conclusion
Several unfolding methods used in CMS 2010 data analyses are presented: iterative Bayesian unfolding,
SVD unfolding, Tikhonov regularization and matrix inversion. The usual tests performed in the unfolding
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Fig. 5: The closure of the unfolding correction in the analysis of the inclusive jet cross section. On the left the
MC truth spectrum and two unfolded spectra are shown. The ratio between the unfolded solutions and MC truth is
shown on the right.

procedure involve closure tests and the model dependency. Uncertainties in the modelling of the response
matrix are examined. The interpretation of the error propagation is discussed, especially the fact that
errors are sometimes smaller than

√
N .
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