p-values for Model Validation

Frederik Beaujean (MPI for Physics)
Allen Caldwell (MPI for Physics)
Daniel Kollár (CERN)
Kevin Kröninger (University of Göttingen)

PHYSSTAT 2011
Outline

• A Bayesian interpretation of p-values
• Common statistics – common pitfalls
• Runs statistic
Example problem

Suppose:

- N measurements (bins/data points) with uncertainty
- Standard Model (SM) predicts quadratic background
- New physics (NP) predicts signal peak (more than one NP model)

Is Standard model enough to explain data?
Example problem

Fit function

\[f(x | \bar{\lambda}) = A + Bx + Cx^2 + \frac{D}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{\sigma^2} \right) \]

- **I**: quadratic
- **II**: constant + Gaussian
- **III**: linear + Gaussian
- **IV**: quadratic + Gaussian
Goodness of Fit: standard approach

Requirement:
- Assume a model M with parameters λ

Test statistic:
- Any scalar function of data $T(D)$
- Interpret: large $T(D)$ = discrepancy between M and D

Example:
- Probability of the data
 \[P(D|\lambda) \propto \prod \exp \left\{ -\frac{(y_i - f(x_i|\lambda))^2}{2\sigma_i^2} \right\} = \exp \left\{ -\frac{\chi^2}{2} \right\} \]
- Familiar choice
 \[T(D) = \chi^2(D) \]
- Extension: discrepancy variable $T(D|\lambda)$. Fitting procedure important!
• Definition:

\[p \equiv P(T > T(D) | M) \]

• Assuming \(M \) and before data is taken: \(p \) uniform in \([0,1]\)

• Confidence level \(\alpha \):

\[p < 1 - \alpha \Rightarrow \text{reject model} \]
Reasoning behind p-values

- Need prior knowledge about alternatives
- Good model: flat p-value
 \[P(p|M_0) = 1 \]
- Bad model: peak at \(p=0 \), sharply falling
 \[P(p|M_i) \approx c_i e^{-c_i p}, \quad c_i \gg 1 \]
Degree-of-belief from p-value

- Similar prior for all models: \(P(M_i) \approx P(M_j) \)
- Bayes Theorem:
 \[
 P(M_0|p) \approx \frac{P(p|M_0)}{\sum_{i=0}^{K} P(p|M_i)}
 \]

Small \(p \):

\[
P(M_0|p \approx 0) \approx \frac{1}{1 + \sum_{i=1}^{K} c_i} \ll 1
\]

Large \(p \):

\[
P(M_0|p \approx 1) \approx 1
\]

Bayes Theorem gives justification to p-values
Comparison study

Goal: calculate p-value distribution for common statistics

- 10000 experiments
- Sample N data points from Model IV with fixed parameters
- Plot the distribution of the p-value for the statistics after fitting

Beaujean, Caldwell, Kollár, Kröninger
http://de.arxiv.org/abs/1011.1674
Test Statistics: Poisson

Pearson

$$\chi^2_P = \sum_i \frac{(n_i - \nu_i)^2}{\nu_i}$$

- n_i observed events
- $\nu_i = \nu_i(\bar{\lambda}, M)$ expected events

Neyman

$$\chi^2_N = \sum_i \frac{(n_i - \nu_i)^2}{n_i}$$

- Uncertainty if $n_i = 0$? Ignore bin or set uncertainty $= 1$
- Asymptotically (i.e. infinite data, in each bin: $n_i \gg 1$) know distribution of χ^2_P, χ^2_N.
Pearson vs. Neyman

- Worrisome peak for Neyman in model III and IV (true)
- Pearson good approximation

Uncertainties only within a model!
Gaussian linear regression

\[\chi^2(\vec{\lambda}, M) = \sum_{i=1}^{N} \left(\frac{f(x_i|\vec{\lambda}, M) - y_i}{\sigma_i^2} \right)^2 = \sum_{i=1}^{N} z_i^2 \]

Least squares constraint, find \(\vec{\lambda}^* \) at global minimum:

\[\nabla \chi^2 \equiv \frac{\partial \chi^2}{\partial \lambda_j} = 0 \quad j = 1 \ldots n \]

Predictions depend on parameters:

\(f(x_i|\vec{\lambda}^*, M) \) **linear** in \(\vec{\lambda}^* \) \(\Rightarrow \nabla \chi^2 = 0 \) **linear** in \(z_i \) \(\Rightarrow P(\chi^2|N - n \text{ DoF}) \)

Example: \(f(x|\vec{\lambda}) = A + Bx + Cx^2 + \frac{D}{\sqrt{2\pi} \sigma^2} \exp \left(-\frac{(x - \mu)^2}{\sigma^2} \right) \) **nonlinear**!

In real life, usually \(P(\chi^2|\vec{\lambda}^*, N, n) \neq P(\chi^2|N - n \text{ DoF}) \)
Multimodality

Two issues:
1) Find wrong mode within ranges
2) Global mode outside of ranges

- Physics motivates small parameter range: e.g. $C>0$, $\sigma>0.2$..., but global mode possibly in larger range
- Gradient based optimization (MINUIT/MIGRAD): need good starting point
- Clever user guess (difficult) or output from Monte Carlo sampler (preferred), e.g. Markov chain [mpp.mpg.de/bat/]

Posterior of model III for particular data set and small range, flat priors
Results: p-value distribution for χ^2

Fitting procedure and parameter ranges affect distribution
Local vs Global Minimum

- Use $P(\chi^2|N - n \text{ DoF})$ to turn χ^2 into p-value
- Small range: missing global minimum in some case, bias toward $p=0$
- True model, global minimum, but still distribution not flat. → Nonlinear problem

Constraining parameter range = prior belief
Different prior → different p-value distribution
• Most statistics disrespect order of data, information wasted

• Human brain good for simple problems

\[\chi^2 = 32.1 \Rightarrow p = 0.16 \]

Example:

• Series of \(N=25 \) datapoints

• Each Gaussian with mean = 0 and variance = 1

\[\Rightarrow \text{Can we combine information about order and magnitude of deviation?} \]

Beaujean, Caldwell
http://arxiv.org/abs/1005.32
Proposal:

- Split ordered data into runs

- Each success run has a weight
 \[\chi^2_{run} \]

- Test statistic: largest weight of any success run
 \[T \equiv \max \{ \chi^2_{run} \} \]

- \(p \)-value becomes
 \[p_{run} \equiv P(T > T_{obs}) \]

- Similarly for failure runs

\[\chi^2_{run} \]

\[23.3 \] \(\text{success} \)

\[0.8 \] \(\text{failure} \)

\[3.2 \]
Gaussian case:

- Distribution of T exactly calculated for any N (non-parametric)
- Source code available via email

\[
\chi^2_{\text{run}} = \frac{(23.3 - 0.8)^2}{3} = 23.3
\]

\[
p_{\text{run}}(23.3) = 5.3 \times 10^{-4}
\]

\[
\chi^2_{\text{run}} = \frac{(0.9 - 8.3)^2}{3} = 9
\]

\[
p_{\text{run}}(9) = 1.3 \times 10^{-1}
\]

$N = 25$

PDF(T_{obs})
Runs distribution

Small range, MCMC

Good model:

- a) fitting bias towards $p=1$
- b) Success and failure similar

Bad model:

- a) Success and failure different
- b) Bias towards $p=0$
- c) Missed a peak: failures OK

Use nonparametric $P(T|N)$
Runs: Joint distribution

- Good model: symmetric around $p_{\text{failure}} = p_{\text{success}}$
- Clear separation between the two models
Conclusions

- p-values useful (even from Bayesian perspective) for goodness-of-fit
- Fitting can make big difference
- Choice of statistic crucial
- Beware: distributions usually approximate, keep uncertainty on p-value in mind

FINIS