Status of theory Computations

Ambresh Shivaji

IISER Mohali, Punjab, INDIA

WG2 meeting on κ_{λ} measurements in single-Higgs channels September 23, 2021

SM Higgs potential & New Physics

Higgs potential & EWSB in the SM,

The mass and the self-couplings of the Higgs boson depend only on λ and $\lambda = (\sqrt{2}G_{\infty})^{-1/2}$ $v = (\sqrt{2} G_{\mu})^{-1/2},$ $m_H^2 = 2\lambda v^2$; $\lambda_3^{\rm SM} = \lambda_4^{\rm SM} = \lambda$. $m_H = 125$ GeV and $v \sim 246$ GeV, $\Rightarrow \lambda \approx 0.13$.

Presence of new physics at higher energy scales can contribute to the Higgs potential and modify the Higgs self-couplings.

Independent measurements of ^λ³ *and* ^λ⁴ *are crucial*.

New Physics Parametrization

Model independent parametrization of new physics such that Higgs mass (m_H) and vev (v) remain unchanged,

$$
\lambda_3 = \kappa_3 \lambda_3^{\text{SM}}, \ \lambda_4 = \kappa_4 \lambda_4^{\text{SM}}
$$

In an EFT these deviations can be captured by higher dim operators.

$$
V^{8}(\Phi) = V^{SM}(\Phi) + \frac{C_6}{v^2} (\Phi^{\dagger} \Phi)^3 + \frac{C_8}{v^4} (\Phi^{\dagger} \Phi)^4
$$

\n
$$
\Rightarrow \kappa_3 = 1 + (2C_6 + 4C_8) \frac{v^2}{m_H^2}, \ \kappa_4 = 1 + (12C_6 + 32C_8) \frac{v^2}{m_H^2}
$$

@ dim-6 : there is a one-to-one correspondence between κ_3 and C_6 The dim-6 operator $\partial^{\mu}(\Phi^{\dagger}\Phi)\partial_{\mu}(\Phi^{\dagger}\Phi)$ also affects λ_3 and other Higgs couplings. Disclaimer : κ_t is equivalent to EFT in single Higgs but not in double Higgs.

Direct determination of λ_3

Information on λ_3 can be extracted by studying double Higgs production processes.

[Frederix et al. 1408.6542]

Numerous pheno studies :

l.; Papaefstathiou et al. '12. Barger et al.; Yao '13. de '. '14. Azatov et al.; Behr et al.; Cao et al.; Dolan et al.;

Very challenging due to small cross section of HH processes.

Need to wait for high-lumi run of the LHC ?

Indirect determination of λ_3

A complementary strategy of probing λ_3 in single Higgs processes via quantum effects (NLO EW)

Proposed for the first time by *McCullough 1312.3322* in *ZH* production at $e^+e^$ collider.

Gorbahn, Haisch 1607.03773; Degrassi, Giardino, Maltoni, Pagani 1607.04251; Bizon, Gorbahn, Haisch, Zanderighi 1610.05771; Di Vita, Grojean, Panico, Riembau, Vantalon 1704.01953; Maltoni, Pagani, AS, Zhao 1709.08649

λ_3 in single Higgs : Calculation

Degrassi, Giardino, Maltoni, Pagani '16; Maltoni, Pagani, AS, Zhao '17 **Master formula:** *Anomalous trilinear coupling* ($\kappa_3 = \lambda_3/\lambda_3^{\text{SM}}$)

 $\Sigma_{\text{NLO}}^{\text{BSM}} = Z_H^{\text{BSM}} \left[\Sigma_{\text{LO}} (1 + \kappa_3 C_1 + \delta Z_H + \delta_{\text{EW}} | \lambda_{3=0}) \right]$

$$
\delta_{\text{EW}}|_{\lambda_3=0} = \mathcal{K}_{\text{EW}} - 1 - C_1 - \delta Z_H
$$

$$
Z_H^{\text{BSM}} = \frac{1}{1 - (\kappa_3^2 - 1)\delta Z_H}, \delta Z_H = -1.536 \times 10^{-3}
$$

 Z_H^{BSM} arises from wave function renormalization and it is *universal* to all processes. C_1 arises from the interference between LO amplitude and λ_3 -dependent virtual corrections. It is finite, *process dependent* and can have non-trivial kinematic dependence. For event-by-event calculation of C_1

$$
C_1({p_i}) \equiv \frac{2\mathcal{R}(\mathcal{M}^{0*}\mathcal{M}_{\lambda_3^{\text{SM}})}^1}{|\mathcal{M}^0|^2}
$$

 Σ_{LO} includes any factorizable higher order correction like QCD.

 $\delta_{\text{EW}}|_{\lambda_3=0}$ includes contribution from virtual W, Z and γ as well as real emissions.

C_1 for cross section and decay

Degrassi, Giardino, Maltoni, Pagani '16; Maltoni, Pagani, AS, Zhao '17

Channels	qqF							VBF <i>ZH WH t</i> tH tHj					$H \rightarrow 4\ell$
$C_1(\%)$	0.66					0.63 1.19 1.03 3.52 0.91							0.82
	C_1^{Γ} [%] $\gamma \gamma$ ZZ WW f \bar{f}									gg			
	on-shell $H \begin{bmatrix} 0.49 & 0.83 & 0.73 & 0 \end{bmatrix}$ 0.66												
$\delta \Sigma_{\kappa_3} = \frac{\Sigma_{\lambda_3}^{\rm BSM} - \Sigma_{\lambda_3}^{\rm SM}}{\Sigma_{\rm LO}} = (Z_H^{\rm BSM} - 1)(1 + \delta Z_H) + (Z_H^{\rm BSM}\kappa_3 - 1)C_1,$													

The impact of full NLO EW corrections : more important for production channels

The full EW effect at inclusive level in signal strength is neglegible.

Calculation of Differential C¹

Two MC public codes to calculate C_1 at differential level: 1. trilinear-FF 2. trilinear-RW (Recommended)

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/HiggsSelfCoupling

Relevant for processes with non-trivial final state kinematics Production: VBF, VH, ttH and tHj; Decay: $H \rightarrow 4\ell$

Calculation of Differential C¹

Although C_1 for ggF is small at inclusive level, the process gives dominant contribution to single H production.

Differential C_1 not available for ggF channel. For that one needs to compute λ_3 induced effect in gg \rightarrow H + j, H + Z processes. Very challenging calculations.

Calculation of relevant two-loop $H + j$ amplitude available in heavy top quark limit (valid for $p_T(H) \ll m_t$); *Gorbahn, Haisch 1902.05480*

Like for $gg \to H$, C_1 may not be large for $gg \to H + j$ and kinematic dependence is expected to be small.

Inclusive vs Differential

 C_1 peaks in the threshold region due to Sommerfeld enhancement in VH, ttH and tHi. The kinematic dependence of C_1 is most significant in ttH. C_1 is small and flat for VBF and H_0 .

Since VBF events include VH configurations, they can be combined to have an effective C_1

Running scale over fixed scale should be preferred if bin size is not small.

Impact of NLO EW corrections

NLO EW corrections (except for ggF) can be computed using MadGraph5_aMC@NLO In the SM, the EW corrections are large in the boosted regime.

 K_{EW} – 1 vs Signal Strength (with & without full NLO EW)

Shape in the threshold region is affected by C_1 , Z_H^{BSM} responsible for overall shift.

Like in the inclusive case, the EW effects do not alter the signal strength significantly for small values of κ_3 .

The global fit based on signal strength will not be affected by the NLO EW corrections.

Extra Slides

Current and future reach at the LHC

13 TeV:

$$
-4.7 < \kappa_3 < 12.6
$$

HL-LHC:

$$
-2 \leq \kappa_3 \leq 8
$$