Double Beta Decay Experiments

> Jeanne Wilson University of Sussex 29/06/05, RAL

Contents

- What is double beta decay and what can it tell us?
- Experimental requirements
- Experimental status
- A closer look at a selection of experiments

Only 35 isotopes known in nature

Neutrinoless mode ($0\nu\beta\beta$)

What Can We Learn?

• Dirac or Majorana?

Absolute Mass Scale

$$\Gamma_{0\nu} = (T_{1/2})^{-1} = G_{0\nu} |M_{0\nu}|^2 m_{\nu}^2$$

Phase space factor

Nuclear Matrix element

Mass Hierarchy?

What Can We Learn?

- Dirac or Majorana?
- Absolute Mass Scale
- Mass hierarchy?
- CP violation?
- Matter-Antimatter Asymmetry

CP Violation?

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \Rightarrow \frac{m_{i}^{2}}{2E_{v}} \Rightarrow \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix}$$

$$U = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\beta_{1}} & 0 \\ 0 & 0 & e^{i\beta_{2}} \end{pmatrix}$$

$$Solar \qquad Atmospheric \\ If sin \theta_{13} \neq 0 \rightarrow CP-violation \\ Majorana : U = U_{PMNS} diag(1, e^{-i\beta_{1}}, e^{-i\beta_{2}})$$

The Neutrino Mass

$$\left\langle m_{v} \right\rangle \equiv m_{ee} = \left| \sum_{k} U_{ek}^{2} m_{k} \right| = \left| \sum_{k} \left| U_{ek} \right|^{2} e^{i\alpha_{ek}} m_{k} \right|$$

$$m_{ee} = U_{e1}^{2} m_{1} \pm U_{e2}^{2} m_{2} \pm U_{e3}^{2} m_{3}$$

$$relative CP \text{ phases } = \pm 1$$

$$m_e = \Sigma |U_{ek}|^2 m_k$$

Experimental

Requirements

Requirements for $0\nu\beta\beta$ Searches

- High Q value
- High Isotopic Abundance

$2\nu\beta\beta$ Decays

The ultimate, irreducible background

S. Elliott, P. Vogel, Ann. Rev. Nucl. Part. Sci. 2002

Requirements for $0\nu\beta\beta$ Searches

- High Q value
- High Isotopic Abundance
- Background Rejection
- Good Energy Resolution
- Theory

$$\Gamma_{0v} = (T_{1/2})^{-1} = G_{0v} |M_{0v}|^2 m_v^2$$

Nuclear Matrix Elements

A factor 3 uncertainty in the NME means a factor of ~10 in half-life.

Requirements for $0\nu\beta\beta$ Searches

- High Q value
- High Isotopic Abundance
- Background Rejection
- Good Energy Resolution
- Theory
 - possibility to measure $2\nu\beta\beta$ modes too
- Large Isotope Sample

How Much Mass?

How Much Mass?

Experiments

Heidelberg-Moscow

- 11kg ⁷⁶Ge (86-88% enrichment)
 5 crystals
- Aug 1990 May 2003 (71.7 kgy)
- 0.2% or better energy resolution

2001 – Evidence for 0vββ peak at 2039keV

References

Evidence

H.V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A 16,2409 (2001) Critical comments

F. Feruglio et al., hep-ph/0201291

C.A. Aalseth et al., hep-ex/0202018

Reply

H.V. Klapdor-Kleingrothaus, hep-ph/0205228

H.L. Harney, hep-ph/0205293

Latest Heidelberg-Moscow results

H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B586 (2004) 198-212

Evidence?

Weak ²¹⁴Bi lines

2010.7, 2016.7, 2021.8, 2052.9keV

- $0\nu\beta\beta$ peak
- ? Electron conversion of 2118keV γ line 2030keV
- 2039keV peak has 4.2σ significance

 $< m_v > = 0.2-0.6 \text{ eV}$

Improvements

- More statistics data taking till May 2003
- Stricter acceptance conditions 54.98 kgy \rightarrow 50.57 kgy
- Refined summing procedure
- Better E calibration of individual runs
- Various fit methods

– Simultaneous fit 2000-2060keV

 Time structure of events – pulse shape for single site events

New Germanium Experiments

GERDA

- GERmanium Detector Array
- At LNGS, (Italy, Russia, Germany, Poland)
- Germanium Diodes

 Inherited from HM, IGEX
- Cu cryostat filled with liquid N
- 3m thick Čerenkov H₂O shield

GERDA

Phase I

- Nearly 20kg Ge (86% enrichment)
- Crystal characterisation
- Install in cryostat, summer 2006
- T_{1/2}>1.2 10²⁵ sensitivity in 1 year
 Phase II
- New crystal material working on purity and efficiency of crystal growing
- Crystal segmentation
- LAr in cryostat for background suppression
- 100kg years $\rightarrow T_{1/2}$ >2 10²⁶ sensitivity

Majorana

- 500kg enriched Ge Segmented detectors
- Based on IGEX technology
 - background reduced by >50
 - cosmogenic n spallation

• 10 years $\rightarrow T_{1/2} > 4 \ 10^{27}$ years $< m_v > \sim 0.03 - 0.04 \ eV$

Majorana

- Design optimisation underway
- DoE review process in progress
- Start with 180kg experiment
 - Easily extendable to 500kg or 1 ton.
- Collaboration with GERDA experiment for simulations.
- Possibly combine for ton scale experiment

Tellurium Experiments

Tellurium Experiments

MiBETA 6.8kg TeO₂

 \rightarrow Cuoricino 40.7 kg TeO₂

\rightarrow CUORE ~ 750 kg TeO₂

- Bolometers E release in crystals gives measurable T increase at ~10mK (~1MeV/0.1mK)
- Detector anticoincidence for bkg suppression

Cuoricino and CUORE

Cuoricino

- 0.18 \pm 0.01 bkg events/keV/kg/y
- Resolution ~7.5 \pm 2.9 keV at 2615 keV
- T_{1/2} > 1.8 .10²⁴ years (10.85 kgy of data)
- 5 years \rightarrow 9 .10²⁴ years (<mv> 0.1-0.7eV) CUORE

- 19 Cuorocino-like towers
- Goal 0.001-0.01 bkg events/keV/kg/y
- Sensitivity <mv> ~ 0.02-0.13eV

NEMOIII

- Running in Frejus UG lab since Feb 2003
- 10kg $0\nu\beta\beta$ isotopes in 20m² cylinder
 - Passive sources
- Event identification:
 - Drift wire tracking chamber
 - Plastic scintillator calorimeter
 - 25Gaus field

• 100 Mo (Q=3034keV) $T_{1/2} > 3.5 \ 10^{23}$ years $< m_v > = 0.65 - 1.0 \ eV$ (V-A), 90%CL • $T_{1/2} (2v\beta\beta)$ for 116 Cd, 150 Nd, 96 Zr and 48 Ca

⁸²Se (Q=2995keV)

 $T_{1/2} > 1.5 \ 10^{23} \text{ years}$

 $< m_v > = 1.3-3.0 \text{ eV}$

NEMOIII First Results

09

10

01

19

16

SuperNEMO

- NEMOIII with 5 years Radon-free data:
- 6914 g of 100 Mo $T_{1/2} > 4 .10^{24}$ y $< m_v > < 0.2 0.35$ eV932 g of 82 Se $T_{1/2} > 8 .10^{23}$ y $< m_v > < 0.65 1.8$ eV
- SuperNEMO = NEMOIII*10 + better $\Delta E/E$
- Sensitivity ~0.03 0.06 eV in 5 yr
- Only background from $2\nu\beta\beta$ tail
- Improve ∆E/E from (14%-16%)/√E to (7%-9%)/√E
- ¹⁰⁰Mo, ⁸²Se ¹¹⁶Cd and ¹³⁰Te

EXO

- > 1 ton Liquid Xe TPC (90% enriched ¹³⁶Xe)
- Ionisation + Scintillation signals \rightarrow Good energy resolution
- Identification of ^{136}Ba daughter \rightarrow Clear signal
 - Electrostatic probe
 - Laser fluorescence
- Prototype late 2005
 - 200kg at WIPP
 - No Ba identification

COBRA

 Large array of 1cm³ CdZnTe semiconductor crystals

- Coincidences, pixellisation and pulse shape analysis
- Good E resolution (~4%)
- Room temperature
- Multiple isotopes, ¹¹⁶Cd, ¹³⁰Te, ¹⁰⁶Cd

Enhanced sensitivity to right handed weak currents (V+A)

M. Hirsch et al., Z. Phys. A 347,151 (1994)

COBRA

- 0.4kg prototype (64 crystals) Autumn 2005
- Prove background reduction and rejection
- Fully funded (UK)
- Physics:
 Access to 2v2EC
 113Cd
 2vββ T_{1/2}

Multipurpose Experiments

XMass : liquid ¹³⁶Xe detector
 Solar neutrinos and Dark matter

- MOON : ¹⁰⁰Mo scintillator detector – Real time studies of low E solar neutrinos
- GENIUS : ⁷⁶Ge in LN
 - Dark matter
- + others

Summary and Outlook

- $0\nu\beta\beta$ is a gold plated channel to probe the fundamental character of neutrinos
- Large mass >100kg ton required for $0\nu\beta\beta$ discovery
- A number of different approaches on the market

