

Updates on LHC external dump (TDE) Evian 2021 workshop

M. Calviani on behalf of SY-STI

23rd November 2021

Outlook

- Introduction to LHC dump
- Challenges and behavior during beam impact
- Dump upgrades during LS2
- Questions on core behavior following beam impact
- Work ahead & Conclusions

SY

Accelerator Systems

(STI)

SY/STI, BE/CEM, EN/MME, TE/VSC, EN/HE, SY/ABT, BE/OP, IPT, EN/ACE, EN/EL, NTNU, external industrial partners

(STI)

Accelerator Systems

Large Hadron Collider beam dump

- LHC beam kinetic energy reaching several hundreds of MJ
 - This energy is sufficient to melt more than 2.5 tons of Cu

	Run 1 Run 2		Run 3	HL-LHC
	(2009–2013)	(2015–2018)	(2022–2024)	(2027–)
$E_{\rm prot}$ (TeV)	4	6.5	6.8	7
Δt_b (ns)	50	25	25	25
N_b	1380	2556	2748	2760
$I_b(p)$	1.7×10^{11}	1.2×10^{11}	1.8×10^{11}	2.2×10^{11}
E_{beam} (MJ)	150	320	539	680
ε_n (µm rad)	≈ 2.5	≈ 2	1.8-2.5	2.5

Where do we safely dispose of these beams without damaging sensitive equipment?

SY

Accelerator Systems

23.11.21

Large Hadron Collider beam dump

SY

Accelerator Systems

(STI)

LHC beam

The LHC TDE (low and high diameter max=22, at node# 1

TDE - Front Window HL 6V2H - Graphite **Contours of Temperature**

It is install (1.4462) E

 $\lambda \approx 15$ >99.9999% of 6 have an inela collision in the

stituted by a graphite and 700 mm

Temperature

6.6980602e+01

2.8663791e+01

2.3665946e+01

2.1999998e+01

SY

Accelerator Systems

23.11.21

Lex

(STI)

What the challenges?

	Fraction of	Energy deposition	
	beam energy	(MJ)	Air: ~0.02%
Dump:			Air: ~0.02%
Graphite	73.6%	397	
Shell	4.2%	23	Cavern: ~0.1%
Windows, flanges etc.	0.04%	0.2	
Total	77.9%	420	Courtesy: A. Lechner
Environment:			
Shielding	17.4%	94	
Air	0.015%	0.08	Absorbed energy (worst case Run 2):
Cavern	0.12%	0.6	Dump ~250 MJ
Molasse, rock, etc.	0.04%	0.2	Shielding ~56 MJ
Total	17.6%	95	Note: dump core is inside shielding

JINST 16 P11019

(STI)

Accelerator Systems

Dumped energy ±200 GJ were dumped so far (60 GJ in Run 1 and 140 GJ in Run 2)

Dumped energy = **proton energy** × **beam intensity** at the moment of beam extraction

Courtesy A. Lechner, from LHC TDE autopsy review (Nov 2021)

SY

Accelerator Systems

Good day:

(STI)

Dumped energy

Operational challenges in the dump started to appear

SY

Accelerator Systems

CÉRN

23.11.21

What did we see?

Starting from end of 2015 (ran Beam direction
problems associated with N₂ If
movements

23.11.21

What do we saw with instrume

(STI)

SY

Accelerator Systems

UD68

Dump fast response

Simulation package appears to be in good agreement with data

HC beam dump JINST 16 P11019

Simulation package appears to be in good agreement with data

23.11.21

STI

SY

Accelerator Systems

CÉRN

Dump slow response

M. Calviani | LHC beam dump JINST 16 P11019

Modifications for Run 3

- During Long Shutdown 2, a large effort has been devoted to provide a Run 3 compatible beam dump system
 - NB: Cannot remove the physical origin of the vibration must work on mitigating the effects of vibration
- Endorsement at <u>January 2020 TDE review</u> and ensuing LMCs (LMC <u>417</u>, <u>402</u>, <u>399</u>, <u>394</u>, <u>390</u>)
 - LS2 upgrades focused on
 - Vibration effects mitigation (N₂ leaks)
 - Dump Windows upgrade

Accelerator Systems

Short summary of LS2 modifications

- Original spares were modified and employed as new operational dumps
- No spares currently available under production and at the moment expected for mid 2023
- Modifications avoids dump-induced leaks in the UHV beam line

SY

Accelerator Systems

UHV extraction line

(STI)

Dump configuration

23.11.21

23.11.21

cycles

SY

Accelerator Systems

(STI)

M. Calviani | LHC beam dump

JINST 16 P11019 16

Dump windows

- Provide robust enclosures at the extremities of the stainless-steel dump block vessel (TiGr2 → TiGr5)
- Contain the internal N₂ atmosphere while withstanding the beaminduced thermo-mechanical and dynamic loads

23.11.21

M. Calviani | LHC beam dump

JINST 16 P11019

17

Dump windows

SY

Accelerator Systems

CÉRN

JINST 16 P11019 18

M. Calviani | LHC beam dump

23.11.21

(STI)

Updates on instrumentation – what's installed

HD camera picture

SY

Accelerator Systems

CÉRN

Data acquisition rack

Thanks to BE/CEM and EN/MME

Optical microphone

STI 23.11.21

Some early results from 2021 test run

SY Accelerator Systems

(STI)

CÉRN

23.11.21

23.11.21

(STI)

Accelerator Systems

What are we doing to understand whether Run 3 operational conditions?

- Autopsy of the highly radioactive UD68 dump to assess core status (Run 2 parameters)
 - Technical Review November 2021 <u>https://indico.cern.ch/event/1072664/</u>
 - Execution in Jan/Feb 2022, results to follow in the weeks/months
- Execution of HRMT56 and subsequent PIE
 - Experiment completed and results to be available starting from January 2022
- Ongoing CERN-NTNU collaboration (Sigraflex[®])

Accelerator Systems

Conclusions

- Despite challenging timeline and scope, LS2 upgrades of LHC dumps have been successfully implemented
- Vessel and windows ready to accept Run3 beam parameters
- Open questions related to core behaviour will be hopefully be clarified during 2022 in view of Run3 (as well as spares & HL-LHC dump)

SY

Accelerator Systems

home.cern