BI feedbacks

SY-BI: D. Louro Alves, L. Grech, S. Jackson
Beam-Based Feedback introduction

- Fast feedback loop with FESA class
 - Beam Feedback Controller (BFC)
 - Developed by SY-BI
- Keep orbit & tune @ reference
 - Orbit Feedback (OFB)
 - Tune Feedback (QFB)
- Critical LHC system
 - Especially during dynamic phases (e.g. Ramp)
System overview

- BBQ
- BPMs
- FGCs
- RF
- BFC (FESA)
- RDA
- UDP
- JAPC
- NXCALS
- LSA
- LumiServer
- YASP
- Dashboard / Expert App
- DB Config App
- HW Config App
- LHC Seq.
HW & FESA API renovation

- Significantly faster HW
 - 64-core CPU & 200 GB RAM
 - Operational + spare (testbed) machines
- Major architecture refactoring, of note
 - Eradicated initial Root obj. initialization
 - Removed internal Ethernet link
 - Merged Service Unit & Controller
- New architecture based on FESA3
 ✓ Simpler and more maintainable

[1] TESTING FRAMEWORK FOR THE LHC BEAM-BASED FEEDBACK SYSTEM (S. Jackson et al.)
HW & FESA API renovation

● New features
 ○ Function-driven behavior
 ○ Reimplemented optics (twiss) handling
 ○ Faster and parallelized Response Matrices calculations
 ○ Better integration with LHC control system

● Studies and prototypes (L. Grech et al.)
 ○ “Feasibility of Hardware Acceleration in the LHC Orbit Feedback Controller”
 ○ “An Alternative Processing Algorithm for the Tune Measurement System in the LHC”
 ○ “A Machine Learning Approach for the Tune Estimation in the LHC”
Operational-side improvements

- Settings were a bit spread out ...
 - LSA, Sequences and BFC init values
 - Confusion & inconsistencies
- Consolidation and simplification
 - LSA as source of truth
 - Make Rules & Value Generators
 - References from operational settings
 - Orbit ref. from BPM ref.
 - Tune ref. from new TUNE_TARGET knob
- Nominal operations via LHC Sequencer
Operational-side improvements

- Operational apps & projects zoo …
 - Requirements evolved with experience
- New & heavily refactored apps
 - HW Configuration app
 - Mapping files & Tune RM generation
 - DB Configuration app
 - LSA Trims, Optic & Ref. Orbit management
 - Dashboard & Expert GUI
 - Dashboards & tools for MDs/commissioning
- Simplified YASP-OFB integration
OP API renovation

- Java API on top of BFC FESA class
 - Integration with CCC ecosystem
 - Ensure correct usage of FESA API
 - Move complexity away from apps
 - *E.g. LHC Seq. agent from 3k+ loc to ~600*
 - Flexible abstraction layer for OP
- Extends BFC API
 - *E.g. “load LSA orbit as reference”*
- Opens the door to testing
 - New specific testing framework
Automatic testing

- Goals
 - Peace of mind when refactoring
 - Reduce commissioning time
 - Requirement validation
 - Encourage “good programming practices”

- Reproducible environment
 - Gitlab CI
 - Testbed machine in simulation

- Closed loop simulation tests
 - Behavior verification (“Does it converge?”)

```java
@Test
public void whenRunning_sendingPauseAndResume_shouldPauseAndResume() {
    ensureRunningFor(Duration.ofSeconds(15), () -> {
        sendFunctionPlayerEvent(PAUSE);
        awaitState(functionPlayerState(), PAUSED);
        sendFunctionPlayerEvent(RESUME);
        awaitState(functionPlayerState(), RUNNING);
    });
}
```
Orbit closed loop simulation

New orbit as BPM UDP Packets

Testing framework

\[\Delta \text{Position} = \text{RM} \cdot \Delta K \]

OP API (Java)

RefOrbit

Optic

BFC (FESA)

Deflections (\(\Delta K\))

ΔPosition = RM \cdot ΔK
Tune closed loop simulation

New Tune reading RDA publication

BBQ Simulation Class
(Java RDA Server)

Q = ΔQ

OP API
(Java)

RefTune

Tune gain

BFC
(FESA)

Tune Trims (ΔQ)
Continuous integration

- Automatic full-stack validation
 - Run on commit and daily
 - Based on Gitlab CI Pipelines
 - Currently ~100 unit tests
 - Report in case of errors
- Detailed history of issues
 - “This happened before…”
- Better development cycle
 - “It worked on my machine…”
Beam test results

- Successfully commissioned!
 - New BFC FESA class
 - OP API + applications
 - LSA settings + sequencer tasks
 - Trim orchestration (e.g. lumi levelling)
- Some issues ironed out on the way
 - Mostly only discoverable with beam ...
- Excellent behavior during ramp @ 3.5 TeV
- Invaluable feedback and experience
 ➔ Smooth start of Run3
Beam test results

Orbit RMS evolution during ramp

... only 200 Ev
Beam test results

Tune error evolution during ramp

... some coupling
Conclusions

● Beam test was very important!
 ○ Minor issues fixed
 ○ Invaluable feedback
 ○ Significant head-start for 2022

● Success recipe
 ○ **Collaborations** & synergies are paramount
 ○ **Testing** & simulation are a MUST
 ○ Embrace change & **best-practices**

● No impact of 1-year extension of Run3
Extra
Coupling abs evolution during ramp

- Coupling B1
- Coupling B2
Container ??

- Isolated environment
 - Apps have their own OS* and environment
 - No dependency on host OS
- Reproducible
 - Work on any OCI-compliant** container engine
- Resource optimization
 - Many heterogeneous app can share HW
- Many more features…
 - … orchestration, scaling, blue/green updates, …
 - … not in the scope of this project

* Host OS kernel is shared → low performance impact vs full VM
** Open Container Initiative → makes containers portable
Another test example

```java
@Test
public void arm_validRefOrbitTimeEvolution_shouldPlay() {
    RefOrbitTimeEvolution refOrbitTimeEvolution = ...
    sendRefOrbitTimeEvolution(refOrbitTimeEvolution);
    ...
    sendFunctionPlayerEvent(ARM);
    awaitState(functionPlayerState(), ARMED);
    ...
    runWhileSendingOrbitTriggersEvery(Duration.ofMillis(80), () -> {
        sendFunctionPlayerEvent(TRIGGER);
        awaitState(functionPlayerState(), RUNNING);
        awaitState(functionPlayerState(), IDLE);
    });
    assertThat(referenceOrbit().get()).isEqualTo(refOrbitT2);
}
```
References

• Testing Framework for the LHC Beam-based Feedback System
 Jackson, Stephen (CERN) ; Alves, Diogo (CERN) ; Di Giulio, Letizia (CERN) ; Fuchsberger, Kajetan (CERN) ; Kolad, Blazej (CERN) ; Pedersen, Jens (CERN)

• Feasibility of Hardware Acceleration in the LHC Orbit Feedback Controller
 Grech, Leander (CERN) ; Alves, Diogo (CERN) ; Jackson, Stephen (CERN) ; Valentino, Gianluca (Malta U.) ; Wenninger, Jorg (CERN)

• An Alternative Processing Algorithm for the Tune Measurement System in the LHC
 Grech, Leander (Malta U.) ; Alves, Diogo (CERN) ; Gąsior, Marek (CERN) ; Jackson, Stephen (CERN) ; Jones, Owain Rhodri (CERN) ; Levens, Thomas (CERN) ; Valentino, Gianluca (Malta U.) ; Wenninger, Jorg (CERN)

• A Machine Learning Approach for the Tune Estimation in the LHC
 Grech, Leander (U. Malta ; CERN) ; Valentino, Gianluca (U. Malta) ; Alves, Diogo (CERN)