Plans for LHC ion operation in Run 3

R. Bruce, R. Alemany Fernandez, H. Bartosik, J.M. Jowett, S. Kostoglou, D. Mirarchi, N. Mounet, S. Redaelli, G. Sterbini

Acknowledgements:

N. Biancacci, F. Boattini, H. Damerau, R. Cai, M. D'Andrea, R. De Maria, S. Fartoukh, N. Fuster-Martinez, P. Hermes, M.A. Jebramcik, V. Di Capua, F. Kroeger, Q. King, D. Kuchler, F. Moortgat, Y. Papaphilippou, B. Petersen, G. Rumolo, M. Schaumann, R. Scrivens, R. Steerenberg, T. Stoehlker, H. Timko, R. Tomas, F. van der Veken, G. Weber, J. Wenninger

- Introduction:
 - Recap of previous achievements
 - Schedule for future heavy-ion runs
 - Requests from the experiments
- LHC machine configuration in Run 3 for heavy-ions
 - Beam production and filling schemes
 - Expected beam parameters
 - IP configuration (optics, crossing angles, levelling...)
 - Dynamic aperture and beam stability
 - Collimation
- Performance estimates
 - Projected performance in future Pb-Pb
 - Projected performance in future p-Pb
 - Potential improvements to be further studied
- Oxygen pilot run
 - Goals and projected performance
- Conclusions

Introduction

- So far, LHC heavy-ion runs for about 1 month per year in Run 1 and Run 2
 - Production runs Pb-Pb or p-Pb
 - Pilot tests with Xe and partially stripped Pb
 - Detailed summary of Run 2: see <u>paper</u> by J. Jowett at Evian 2019
- Total integrated luminosity so far
 - Pb-Pb: 1.5 nb⁻¹ in ALICE, 2.54 nb⁻¹ in ATLAS/CMS, 0.26 nb⁻¹ in LHCb
 - p-Pb: 75 nb⁻¹ in ALICE, ~220 nb⁻¹ in ATLAS/CMS, 36 nb⁻¹ in LHCb
- Encountered limits
 - Luminosity limits from pileup at ALICE detector, and beam losses from bound-free pair production (BFPP)
 => levelled ALICE and LHCb at 1×10²⁷ cm⁻¹ s⁻²
 - Compare: ~6×10²⁷ cm⁻¹ s⁻² achieved at ATLAS/CMS
 - Several fills lost on beam dumps due to 10 Hz events; collimation efficiency

The future of heavy-ion operation

- Heavy-ion program scheduled to continue in Run 3-4 (at least)
- Tentative plan for Run 3 (from <u>talk</u> B. Petersen, assuming LS3 starts in 2025 – to be reviewed if LS3 shifted)
 - 2022: Pb-Pb, 1 month
 - 2023: p-Pb, 1 month
 - 2024: Pb-Pb, 2 months
 - In addition, p-p reference runs to be fitted in
 - Potential O-O and p-O pilot run to be scheduled, possibly in 2024
 - In Run 4 expect another three one-month runs => in total, 7 months before end of Run 4

EDMS: <u>2311633 v.1.0</u>

Future heavy-ion runs? Detailed schedule still to be defined Oxygen pilot run?

Requests from experiments

- WG5 in the 2018 HL-LHC / HE-LHC physics workshop dealt with heavy-ion physics
- Yellow report released with luminosity requests and proposal for extended heavy-ion running: <u>CERN-LPCC-2018-07</u>

- Pb-Pb at $\sqrt{s_{NN}} = 5.5$ TeV, $L_{int} = 13$ nb⁻¹ (ALICE, ATLAS, CMS), 2 nb⁻¹ (LHCb) - pp at $\sqrt{s} = 5.5$ TeV, $L_{int} = 600$ pb⁻¹ (ATLAS, CMS), 6 pb⁻¹ (ALICE), 50 pb⁻¹ (LHCb) - pp at $\sqrt{s} = 14$ TeV, $L_{int} = 200$ pb⁻¹ with low pileup (ALICE, ATLAS, CMS) - p-Pb at $\sqrt{s_{NN}} = 8.8$ TeV, $L_{int} = 1.2$ pb⁻¹ (ATLAS, CMS), 0.6 pb⁻¹ (ALICE, LHCb) - pp at $\sqrt{s} = 8.8$ TeV, $L_{int} = 200$ pb⁻¹ (ATLAS, CMS, LHCb), 3 pb⁻¹ (ALICE) - O-O at $\sqrt{s_{NN}} = 7$ TeV, $L_{int} = 500 \ \mu \text{b}^{-1}$ (ALICE, ATLAS, CMS, LHCb) - p-O at $\sqrt{s_{NN}} = 9.9$ TeV, $L_{int} = 200 \ \mu \text{b}^{-1}$ (ALICE, ATLAS, CMS, LHCb) - Intermediate AA, e.g. $L_{int}^{\text{Ar-Ar}} = 3-9 \ \text{pb}^{-1}$ (about 3 months) gives NN luminosity equivalent to Pb-Pb with $L_{int} = 75-250 \ \text{nb}^{-1}$ - Proposal for after Run 4

- Heavy-ion operational scenario for Run 3-4: see <u>CERN-ACC-report</u> and <u>EPJ Plus paper</u>
 - Updates since then: target beam energy for Run 3 changed to 6.8 Z TeV; deferral of installation of 11T dipoles and IR7 DS collimators

- Introduction:
 - Recap of previous achievements
 - Schedule for future heavy-ion runs
 - Requests from the experiments
- LHC machine configuration in Run 3 for heavy-ions
 - Beam production and filling schemes
 - Expected beam parameters
 - IP configuration (optics, crossing angles, levelling...)
 - Dynamic aperture and beam stability
 - Collimation
 - Performance estimates
 - Projected performance in future Pb-Pb
 - Projected performance in future p-Pb
 - Potential improvements to be further studied
 - Oxygen pilot run
 - Goals and projected performance
 - Conclusions

LHC beams

- In Run 3, plan to upgrade to 50 ns beams from injectors, thanks to SPS slip-stacking
 - Could get ~70% more bunches into the LHC compared to 75 ns used in 2018
 - Very good progress so far in commissioning (see talk A. Huschauer)
 - 75 ns remains available as backup in case of issues with slipstacking
- Range of 50 ns filling schemes worked out and optimized
 - Different number of LHCb collisions, with varying penalty for the other experiments n.o. collisions at

	Filling scheme	n.o. bunches	IP1/5	IP2	IP8	spacing
50 ns	1240b_1240_1200_0	1240	1240	1200	0	50 ns
	1240b_1144_1144_239	1240	1144	1144	239	50 ns
	1240b_1088_1088_398	1240	1088	1088	398	50 ns
	1240b_1032_1032_557	1240	1032	1032	557	50 ns
	1240b_976_976_716	1240	976	976	716	50 ns
75 ns backup	733b_733_702_468	733	733	702	468	75 ns

- 50 ns schemes exist with many more collisions at all IPs than with 75 ns
- Final scheme to be selected by LHCC/LPC, variations during a run possible

Pb beam parameters at injection and collision

• Beam parameters at LHC injection provided by LIU

LHC design	2018	Run 3
592	733	1240
100	75	50
54	42	56
7	23	19
1.4	n.a. ^a	1.5
	LHC design 592 100 54 7 1.4	LHC design 2018 592 733 100 75 54 42 7 23 1.4 n.a. ^a

There are no reliable measurements of the 75 ns beam emittance available at LHC injection.

- Some degradation between injection and collision assumed uncertainties apply
- Beam parameters in collision (similar to HL-LHC, but 6.8 Z TeV beam energy

	LHC design	2018	Run 3	•
Beam energy (Z TeV)	7	6.37	6.8	-
Bunch spacing (ns)	100	75	50	-
Total n.o. bunches	592	733	1240	-
Bunch intensity (10^7 Pb ions)	7	21	18	-
Normalized transverse emittance (μ m)	1.5	2.3	1.65).09.23

8

IP configuration at 7 Z TeV

• Pb optics cycle will be different from the p-p optics

- Present baseline: Optics for Run 3 similar to the 2018 Pb-Pb run

	IP1	IP2	IP5	IP8
β^* (m)	0.5	0.5	0.5	1.5
crossing plane	V	V	Η	Η
spectrometer half crossing (μ rad)	0	∓70	0	-135
external half crossing (μ rad)	170	± 170	170	-170
net half crossing (μ rad)	170	± 100	170	-305
spectrometer polarity	-	pos/neg	-	pos

- Assume offset levelling at L= 6.4×10^{27} cm⁻² s⁻¹ for IP1/2/5 and L= 1.0×10^{27} cm⁻² s⁻¹ at IP8
 - ALICE detector upgraded to 50 kHz max. event rate in LS2
 - Previous IR2 luminosity limit from collisional losses alleviated through new collimators installed in LS2 (see talk G. Azzopardi)
 - LHCb luminosity limited by luminosity-driven losses
 - No direct need for β^* -levelling. Offset levelling provides simplicity in commissioning and validation
- Further push in β^* and/or crossing angle for increased performance under study

Beam-beam studies for ions

- For details: see <u>talk</u>S. Kostoglou at WP2 meeting
- First studies of dynamic aperture (DA) with ion beams
 - Compared to protons, beam-beam is less critical due to smaller bunch charge and larger bunch spacing
 - But magnetic errors have a larger relative contribution dominating effect for DA
- Baseline scenario: DA > 6 σ for all seeds => OK for operation
- Reduced crossing angles: OK without magnetic errors
 - With errors, worst seeds have min DA < 6 σ , but still need to include full error correction
 - Also, not clear if 6 σ criterion is well suited for ions miss correlation between DA and beam lifetime
- To gain luminosity (see later), could potentially reduce crossing angles in future operation, but would need further studies to conclude
 - Adjust process with crossing inversion to be checked?

S. Kostoglou

Beam stability

- For details, see <u>presentation</u> by N. Mounet in HSC meeting
- Conclusion: Pb beams can be stabilized with an octupole current of about 60A for Q'>10 (including factor 2 margin)
 - Plenty of margin w.r.t. the max current of 570 A could give some flexibility in collimator settings if needed
 - Note: this is the worst possible scenario (LS2 upgrade, no ADT)
 - Caveat: crystal collimators still to be included in calculations, although no issues observed in 2018 MDs

Collimation

- LHC collimation is ~2 orders of magnitude less efficient with Pb than with protons
 - Losses with ions risk to become limiting in Run 3 (see <u>talk</u> D. Mirarchi at LMC)
- Initial mitigation plan: DS collimators with 11T dipoles → postponed
- Now resorting to backup plan: crystal collimation
 - Two new crystal assemblies to be installed in 2022
 - Very good performance observed in 2018 MDs up to factor 8 improvement with standard system in place
- If losses are really limiting, could consider staying at Run 2 energy of 6.37 Z TeV – some discussions on beam energy with experiments
 - Default option is 6.8 Z TeV unless serious issues with crystal system
 - Decision point for experiments: summer 2022

- Introduction:
 - Recap of previous achievements
 - Schedule for future heavy-ion runs
 - Requests from the experiments
- LHC machine configuration in Run 3 for heavy-ions
 - Beam production and filling schemes
 - Expected beam parameters
 - IP configuration (optics, crossing angles, levelling...)
 - Dynamic aperture and beam stability
 - Collimation

Performance estimates

- Projected performance in future Pb-Pb
- Projected performance in future p-Pb
- Potential improvements to be further studied
- Oxygen pilot run
 - Goals and projected performance
- Conclusions

Simulations of typical Run 3 fill, Pb-Pb

- Simulated all considered filling schemes for Run 3-4, E=6.8 Z TeV
- Using projected LIU beam parameters – might not be achieved immediately at the start of Run 3

Simulations using **Collider Time Evolution** (CTE): particle tracking simulation using one-turn map

- Ref: 2010 <u>PRSTAB paper</u>, T. Mertens <u>MSc thesis</u>, M. Schaumann <u>PhD thesis</u>, 2021 <u>EPJ</u> Plus paper
- Successfully benchmarked with 2018 data and other code (MBS, Ref: M. Jebramcik PhD thesis, 2021 <u>EPJ Plus paper</u>)

Integrated luminosity in a 1-month run

- From the single fill, calculate optimum fill time, and average luminosity
- Estimate luminosity in a typical 1-month ion run as

$$\mathcal{L}_{\text{tot}} = \mathcal{L}_{\text{avg}}(T_{\text{f,opt}}) \times T_{\text{run}} \times \eta$$

- Assumptions
 - 200 min turnaround time (detailed estimate from J. Jowett, Chamonix 2017)
 - Operational efficiency η assumed to be either (see <u>LIU specification document</u>)
 - 62% as in LIU specification
 - Could be challenging feasibility needs to be demonstrated for future higher beam intensities
 - 50% as for Run 3 and HL-LHC protons
 - T_{run}=24 days of physics available after initial commissioning

Projected 1-month performance, Pb-Pb

	Integrated 1-month luminosity in nb -1	IP1/5	IP2	IP8 🍕	} ≥
	1240_1200_1240_0	2.5, 3.1	2.7, 3.3	0., 0.	
	1144_1144_1144_239	2.4, 3.	2.6, 3.3	0.17, 0.2	22
50 ns —	1088_1088_1088_398	2.3, 2.9	2.6, 3.2	0.29, 0.3	36
50 115	1032_1032_1032_557	2.2, 2.8	2.5, 3.1	0.38, 0.4	48
	976_976_976_716	2.2, 2.7	2.4, 3.	0.46, 0.5	57
75 ns hac	733_702_733_468	1.7, 2.1	1.9, 2.3	0.34, 0.4	42
	50% C	∫	OP eff.		

- The two last 50 ns schemes give higher luminosity than 75 ns at all experiments
 - Always better to use 50 ns if available and with reasonable intensity
- Lose about 1-3% at 6.8 Z TeV compared to previous numbers at 7 Z TeV
 - If stepping back to 6.37 Z TeV, would lose about 5-8%
- Assuming five Pb-Pb runs until the end of Run 4 => each month, need 2.6 nb⁻¹ at IP1/2/5, 0.4 nb⁻¹ at IP8
 - Experiments' requests are satisfied with 62% OP efficiency
 - We're about 10% short of requests with 50% OP efficiency

Potential performance improvements: Pb-Pb

- Recent studies (<u>talk</u> at WP2 meeting): Changing β^* , crossing angles, levelling targets gives handle to increase luminosity
 - E.g. to reach targets if OP efficiency would be lower than 62%, or if beam parameters from the injectors are short of the LIU values
- Need further studies to verify feasibility
 - Detailed aperture measurements with beam to verify $β^*$ -reach in IR2 and IR8
 - Check optics feasibility of smaller $β^*$ in *all* IPs
 - Discussions with S. Fartoukh, R. De Maria
 - Check beam-beam for feasibility of smaller crossing angle
 - Possibly need beam studies
 - Discussions with S. Kostoglou, G. Sterbini
 - For levelling target at IP8, need to study energy deposition and quench limit
 - Discussions with FLUKA team
- Will likely not have all answers for 2022 => propose to start with baseline configuration in 2022, and explore possibilities for performance increase in later runs

Example of improved configuration: 100 urad net crossing at all IPs, $\beta^{*}=0.45$ m at IP1/2/5, $\beta^{*}=1m$ at IP8: reach target with 50% OP efficiency

Assumptions for performance estimates: p-Pb

- For p-Pb, new filling schemes developed recently with realistic proton train structure
 - Note: previously using approximations without detailed filling schemes worked out
 - Considered both 50 ns and 25 ns proton beams
 - Possibly need further studies (instrumentation, beam-beam...) to verify impact of 50 ns ion beam and 25 ns p beam
 - For details: see <u>talk</u> at WP2 meeting
- Baseline assumptions, used for simulations
 - ALICE levelled at L=5×10²⁹ cm⁻² s⁻¹, following upgrade, the other experiments not levelled
 - Assuming a proton beam with 3E10 p/bunch, and 2.5 μm emittance
- Could revise some of these assumptions to gain in performance

Projected 1-month performance, p-Pb

Integrated 1-month			°₹₹₩₩
luminosity in nb⁻¹	IP1/5	IP2	IP8
1232 Pb_1320 p_765_762_733	474., 588.	329., 408.	149., 185.
50 ns p - 1232 Pb_1320 p_848_820_553	517., 641.	329., 407.	111., 137.
1232 Pb_1320 p_901_843_432	542., 672.	327., 406.	85.4, 106.
25 ps p 1232 Pb_2520 p_1092_793_755	628., 778.	314., 389.	143., 177.
1232 Pb_2520 p_900_926_897	529., 656.	325., 403.	173., 215.
	1 1		
50% (OP eff. 62% OF	Peff.	

- Assuming two p-Pb runs until the end of Run 4, we can satisfy requests by ALICE/ATLAS/CMS, but we're about a factor 2 short of LHCb request
 - In one month, would need 600 nb⁻¹ at IP1/5, 300 nb⁻¹ at IP2/8
- Potential mitigation found to satisfy all experiments: Increase proton bunch intensities to 1.3×10¹¹
 - Need to verify feasibility of strong p beam vs weak Pb beam: Beam instrumentation, beam-beam ...
 - See <u>talk</u> at WP2 meeting

- Introduction:
 - Recap of previous achievements
 - Schedule for future heavy-ion runs
 - Requests from the experiments
- LHC machine configuration in Run 3 for heavy-ions
 - Beam production and filling schemes
 - Expected beam parameters
 - IP configuration (optics, crossing angles, levelling...)
 - Dynamic aperture and beam stability
 - Collimation
- Performance estimates
 - Projected performance in future Pb-Pb
 - Projected performance in future p-Pb
 - Potential improvements to be further studied
- Oxygen pilot run
 - Goals and projected performance
- Conclusions

Oxygen pilot run: when, why, how

- Proposal for pilot O-O and p-O run in Run 3 possibly in 2024
- Motivations:
 - Physics interest from experiments
 - Study limitations and performance, in view of proposed Run 5 high-intensity operation with lighter ions
- Target: about one week, low luminosity
 - Most efficient option is to re-use the machine cycle of the previous Pb-Pb run at the same rigidity, using pilot beams with single injections (staying below 3×10¹¹ charges per beam)
- Studied performance for two beam energies:
 - 7 Z TeV, for highest energy → need to update for 6.8 Z TeV
 - 5.52 Z TeV, for same energy per nucleon as in main Pb-Pb runs

Wish list from experiments:

- O-O: ~0.5/nb for soft physics program, ~2/nb equivalent to 2010 PbPb run for hard-probes
- p-O: LHCb would like 2/nb, LHCf would like ~1.5/nb
- LHCf requests low pileup of 0.02 in p-O (update: previously 0.01)
- ALICE wants low pileup of 0.1-0.2

Performance with oxygen

- Simulations show we can reach
 - O-O targets in about a day, with 1-2 fills
 - p-O targets in about 2.5 days
- Caveat: Large uncertainties apply!
 - We have never produced these beams for LHC
 - Very sensitive to downtime and faults
- Adding time for commissioning and some contingency, could maybe fit the whole run in about 6-8 days at highest energy if re-using Pb cycle
 - At lower energy, need more commissioning time due to new cycle, and we get lower luminosity
- Oxygen run seems a priori feasible and compatible with targets, but will certainly also be challenging
- Some work still remains: optimize machine configuration, update performance estimates, study transmutation effect
- More details: See <u>IPAC'21 paper</u>

Dashed lines: 12 bunches with $2.3 x 10^9 \mbox{ O/bunch}$, Solid lines: 6 bunches with $4.6 x 10^9 \mbox{ O/bunch}$

R. Bruce, 2021.11.24 22

- Introduction:
 - Recap of previous achievements
 - Schedule for future heavy-ion runs
 - Requests from the experiments
- LHC machine configuration in Run 3 for heavy-ions
 - Beam production and filling schemes
 - Expected beam parameters
 - IP configuration (optics, crossing angles, levelling...)
 - Dynamic aperture and beam stability
 - Collimation
- Performance estimates
 - Projected performance in future Pb-Pb
 - Projected performance in future p-Pb
 - Potential improvements to be further studied
- Oxygen pilot run
 - Goals and projected performance
- Conclusions

Conclusions

- Heavy-ion operation will continue in Run 3 with yearly 1-month runs
 - 2-month run foreseen in 2024 at end of Run 3
 - If LS3 is shifted, heavy-ion run schedule to be reviewed impact on ion luminosity only if there is a change in allocated time
- Baseline machine scenario for Run 3 worked out in detail, relying on
 - New 50 ns beams using slip-stacking in SPS (backup: 75 ns)
 - New crystal collimators, dispersion suppressor collimators in IR2
 - Reaching full HL-LHC performance already in Run 3
 - Detailed schedule and scenario for p-p reference runs to be studied
- Estimated performance for typical 1-month run:
 - Pb-Pb: 2.2-2.8 nb⁻¹ in ATLAS/ALICE/CMS, up to ~0.5 nb⁻¹ in LHCb
 - Could envisage to increase luminosity further through β^* , crossing angle, levelling targets need further feasibility studies
 - p-Pb: 470–630 nb⁻¹ at ATLAS/CMS, ~320 nb⁻¹ at ALICE, up to 170 nb⁻¹ at LHCb
 - About factor 2 short of LHCb target, could be mitigated with higher p intensity need further feasibility studies
- Propose to start in 2022 with baseline scenario and study potential improvements for later runs
- Scenario for 1-week oxygen pilot run worked out
 - Re-use existing Pb cycle, setup beam intensity
 - potential to reach experiment's targets in 6-8 days, but large uncertainties apply

Thanks for the attention!

- Significant improvement on Pb intensity already achieved over Run 1-2 following big efforts on the injector side
 - In 2018: achieved 3 times higher bunch intensity and 24% more bunches than in the LHC design report
- Only remaining intensity upgrade for HL-LHC: SPS slip-stacking
 - Interleave 100 ns bunch trains in the SPS through RF manipulations to achieve a 50 ns bunch structure
 - Result: 70% more bunches than in 2018 (had 75 ns spacing)
 - Relies on SPS RF upgrade done in LS2 planned to be used already in Run 3, making full HL-LHC intensity available
- Very good progress with SPS commissioning in 2021
 - Slip-stacking gymnastics demonstrated, but some work still needed to achieve LIU intensity at SPS extraction
 - Good hope to have operational slip-stacking in 2022
 - More details: see talk A. Huhschauer (yesterday)

From LIU technical design report, vol. 2

Alleviation of collimation losses

- Original plan from HL-LHC project, to alleviate problems with losses due to higher Pb intensity: install new collimators (TCLDs) to safely intercept losses in cold region after first dipoles
- To make space, replace standard main dipole (8.33 T) by two shorter and stronger 11T magnets
- Decision in 2020: Installation of TCLD + 11T dipoles postponed, due to performance degradation observed with 11T magnets
 - Now we fall back to the backup plan with crystal collimation

15.66 m long 11 T Dipole Full Assembly with Collimator

Principles of crystal collimation

- Charged particles can get **trapped** in the potential well generated by adjacent **crystalline planes**
- Particles are forced to oscillate in relatively empty space: reduced interaction rate
- Bent crystals can efficiently steer halo particles: equivalent magnetic field of hundreds of Tesla onto massive absorber

	Bent cr	ystal Deflect	ed halo Massive Absorl	ber		
	ار کر	Secondary h + hadronic s	alo hower & Dechanneling			Main promise:
Circulating beam	J JP	rimary halo	Insertion	Arc	IP	✓ Reduced fragmentation of ions
	:			:		Significant cleaning improvement

20.00

∑^{15.00} ⊕

⊃ 10.00

5.00

0.00 1.....

-0.25 0.25 x (A)

LHC crystal installation

• Four Si crystals installed in the LHC 2015-2018: two per beam, one per plane

Assemblies with **different designs**, specific for **Machine Development activities Complete layout** to allow thorough investigations and **operational** tests

Operational tests with crystal collimation

- Several LHC machine development sessions done to study crystal collimation with protons and heavy ions
- In 2018 Pb run, crystal collimators adiabatically inserted in the standard system with up to 648 bunches
 - Standard collimation system kept at nominal settings
 - Crystals set 0.25 σ tighter with respect to TCPs
 - Standard secondary collimator used as absorber for channeled halo
- These settings are a potential candidate for operational settings in the 2022 Pb run
 - In case of unexpected issues, fall back on the standard collimation system, but may need to limit intensity

Cleaning efficiency with crystals

• Beam loss pattern for Pb in IR7 studied with standard system and with crystals

M. D'Andrea

Significant improvement observed with crystals

Achieved performance with crystals

- Global leakage ratio calculated from highest BLM reading in the whole IR7-DS with the standard versus crystal collimation system
 - Leakage ratio > 1 indicates improved cleaning efficiency with crystals
 - Improvement factor 1.5-8 observed
- Note: These are empirical figures of merit based on BLMs
 - On-going effort to verify these results in simulations

Crystal	Maximum normalize	ed BLM signal [a.u.]	Clobal leakage ratio	
Orystar	Standard	Crystal	Gibbai leanage ratio	
B1H	$(5.81 \pm 1.03) \cdot 10^{-13}$ Q8-9	$(7.30 \pm 0.15) \cdot 10^{-14}$ Q8-9	8.0 ± 1.4	Crystals and
B1V	$\begin{array}{c} (1.95\pm 0.07)\cdot 10^{-13}\\ \text{Q8-9} \end{array}$	$\begin{array}{c} (6.39 \pm 0.05) \cdot 10^{-14} \\ \text{Q12-13} \end{array}$	3.1 ± 0.1	goniometers to
B2H	$(2.76 \pm 0.39) \cdot 10^{-13}$ Q12-13	$(7.89 \pm 0.78) \cdot 10^{-14}$ Q8-9	3.5 ± 0.6	2021 with new
B2V	$\begin{array}{c} (2.25\pm0.01)\cdot10^{-13}\\ \text{Q8-9} \end{array}$	$\begin{array}{c} (1.46 \pm 0.36) \cdot 10^{-13} \\ \text{Q8-9} \end{array}$	1.5 ± 0.4	design

Beam-beam studies for ions

- For details: see <u>talk</u>S. Kostoglou at WP2 meeting
- First studies of dynamic aperture (DA) with ion beams
 - Compared to protons, beam-beam is less critical due to smaller bunch charge and larger bunch spacing
 - But magnetic errors have a larger relative contribution dominating effect for DA
- Large spread between different error seeds
 - Baseline scenario: DA > 6 σ for all seeds => OK for operation
 - Reduced crossing angles: worst seeds have min DA < 6 σ
 - Could potentially study intermediate angles
 - However, not clear if 6 σ criterion is well suited for ions miss correlation between DA and beam lifetime
- Could potentially reduce crossing angles in future operation, but would need further studies, possibly with beam
 - Propose to use present baseline crossing angles in 2022, but potentially study a crossing angle reduction in future runs

$$\begin{split} &7\ Z\ TeV,\ N_b{=}1.8\times 10^8\ ions/bunch,\ \beta_{IP1J5}^*=50\ cm,\ \varphi/2_{(IP1,\ V)\Pi(IP5,\ IP)}=170\ \mu rad\\ &\varphi/2_{IP2}=170\ \mu rad,\ \varphi/2_{IP8}=-170\ \mu rad,\ LHCb\ negative\ internal\ crossing,\ (Q_x,Q_y)=(62.31,60.32)\\ &\epsilon_n=1.65\ \mu m,\ Q'=10,\ I_{MO}=250\ A,\ C^-=10^{-3},\ \delta p'p=24\times 10^{-5},\ 60\ seeds \end{split}$$

Alleviation of collisional losses

- Secondary beams created in Pb-Pb collisions with altered magnetic rigidity
 - Bound-free pair production (BFPP): electron capture => changed charge (dominant process)
 - Electromagnetic dissociation (EMD): loss of one or several nucleons => changed mass (1n and 2n dominant), and possibly charge
 - Cause localized losses in the dispersion suppressor that could quench impacted magnets => limit on luminosity
- Alleviation through orbit bumps successfully deployed in IR1/5 already in Run 2
 - Steer losses into empty connection cryostat: By now, a well-established operational procedure
- In IR2, bumps alone do not work => Run 2 luminosity was limited
 - Alleviation: Need new TCLD collimator in combination with orbit bump
 - New IR2 TCLDs successfully installed in 2020 for Run 3
- In IR8: No TCLDs, bumps alone do not work: still need to limit IP8 luminosity in Run 3

Connection cryostat ("missing dipole")

Installation of TCLDs in IR2

ALICE upgrade

- LS2 upgrade of ALICE detector => Can now handle ~6.4 higher peak luminosity than in Run 2
 - Both pileup limit and BFPP limit from Run 2 are overcome => Increase ALICE levelling target in Run 3 to 6.4×10²⁷ cm⁻¹ s⁻²

Images from LHCC <u>talk</u> by T. Gunji

Simulation codes and benchmark

- Now estimate luminosity in typical fill in baseline scenario
- To reduce uncertainty and increase confidence, using two different codes based on different principles to simulate luminosity performance
- Collider Time Evolution (CTE): particle tracking simulation using one-turn map
 - Ref: 2010 <u>PRSTAB paper</u>, T. Mertens <u>MSc thesis</u>, M. Schaumann <u>PhD thesis</u>, 2021 <u>EPJ Plus paper</u>
- Multi-bunch simulation (MBS): Numeric solution of ODEs for all bunches in filling scheme
 - Ref: M. Jebramcik PhD thesis, 2021 EPJ Plus paper
- Extensive benchmark with 2018 Pb-Pb data
 - Excellent agreement found for given starting conditions, integrated luminosity in single fills typically reproduced within a few percent
 - Including 100h non-collisional lifetime, from fit of non-colliding bunches

Eur. Phys. J. Plus 136, 745 (2021): link

Example fills: 7477 and 7490 Pb-Pb, 6.37 Z TeV

733 bunches, 75 ns

Integrated luminosity in a 1-month run

 From the single fill, calculate optimum fill time, and average luminosity, assuming all fills are kept to optimal length

$$\mathcal{L}_{avg}(T_{f}) = \frac{\int_{0}^{T_{f}} \mathcal{L}(t) dt}{T_{f} + T_{ta}}$$

• Estimating luminosity in a typical 1-month ion run as

$$\mathcal{L}_{\mathrm{tot}} = \mathcal{L}_{\mathrm{avg}}(T_{\mathrm{f,opt}}) \times T_{\mathrm{run}} \times \eta$$

- Assumptions
 - 200 min turnaround time (detailed estimate from J. Jowett, Chamonix 2017)
 - η =50% operational efficiency
 - T_{run}=24 days of physics available after initial commissioning

	6.37 Z TeV Pb-Pb	7 Z TeV Pb-Pb	7 Z TeV p-Pb
Hadronic inelastic (b)	7.7	7.8	2.13
BFPP (b)	278	281	0.044
EMD (b)	223	226	0.035
Total(b)	509	515	2.21

- Pb-Pb intensity decay dominated by very large burnoff cross sections
- Hadronic inelastic (with the main processes to be studied by the experiments) is only 1.5% of the total cross section
 - Electromagnetic interactions dominate
 - Interesting physics program also for those

Projected 1-month performance, Pb-Pb

	Filling scheme	\mathcal{L}_{tot} IP1/5	\mathcal{L}_{tot} IP2	\mathcal{L}_{tot} IP8
	1240b_1240_1200_0	2.5 [2.6]	2.7 [2.8]	0 [0]
	1240b_1144_1144_239	2.4 [2.4]	2.6 [2.7]	0.17 [0.21]
50 ns 🚽	1240b_1088_1088_398	2.3 [2.3]	2.6 [2.6]	0.29 [0.33]
	1240b_1032_1032_557	2.2 [2.2]	2.5 [2.5]	0.38 [0.43]
	1240b_976_976_716	2.2 [2.1]	2.4 [2.5]	0.45 [0.49]
75 ns backup	733b_733_702_468	1.7 [1.8]	1.9 [1.9]	0.34 [0.36]
	Fro	∬ └∖ m CTE From I	MBS in []	

Integrated 1-month luminosity **in nb**-1

- The two last 50 ns schemes give higher luminosity than 75 ns at all experiments
 - Always better to use 50 ns if available and with reasonable intensity
- Lose about 1-3% at 6.8 Z TeV compared to previous numbers at 7 Z TeV
- If stepping back to 6.37 Z TeV, would lose about 5-8%
- Assuming five Pb-Pb runs until the end of Run 4, would be about 10% short of requests from experiments
 - Note: 50 % operational efficiency might be conservative

	Filling scheme	\mathcal{L}_{tot} IP1/5	\mathcal{L}_{tot} IP2	\mathcal{L}_{tot} IP8
	1232Pb_1320p_765_762_733	473 [-]	329 [-]	149 [-]
50 ns p —	1232Pb_1320p_848_820_553	516 [-]	328 [-]	110 [-]
	1232Pb_1320p_901_843_432	542 [-]	327 [-]	85 [-]
25 nc n	1232Pb_2520p_1092_793_755	628 [-]	313 [-]	143 [-]
25 lis p =	1232Pb_2520p_900_926_897	528 [-]	325 [-]	173 [-]
	_	7		
	Fr	om CTE		

- Assuming two p-Pb runs until the end of Run 4, we can satisfy requests by ALICE/ATLAS/CMS, but we're about a factor 2 short of LHCb request
 - Note: 50 % operational efficiency might be conservative

Potential performance improvements: p-Pb

- Recent studies (<u>talk</u> at WP2 meeting): For p-Pb, improvements of machine configuration are possibly not enough to gain factor >2 at LHCb
 - A very pushed machine configuration with β*=0.4 m at IP1/2/5 and β*=0.5 m at IP8, combined with smaller crossing angles, gives luminosity very close to targets might not be feasible in operation
 - Increasing proton bunch intensities to 1.3E11 gives needed improvement
- Need further studies to verify feasibility (as for Pb-Pb)
 - Specifically for p-Pb: Feasibility of strong p beam vs weak Pb beam
 - Beam instrumentation
 - Beam-beam
 - Feasibility of 25 ns p beam vs 50 ns Pb beam
 - Not strictly necessary: with nominal p intensity, can reach targets also with 50 ns
 - Leveling targets and filling schemes still to be further optimized

