



# An OMC perspective on the commissioning

T. Persson
On behalf of the OMC-team





# Old plot from Evian 2019...



The goal for the commissioning 2022 is to do basically all these steps!

Only possible thanks to the experience from Run 2





#### Introduction

- The presentation is divided into 3 parts:
  - Injection
  - Squeezed optics + Ramp
  - Calibration optics
    - Ballistic optics
    - 60 deg phase advance optics





# What do we propose to start with in terms of corrections?

- Global β-beat correction (injection)
- Local coupling corrections
  - Very similar to Run 2 and validated during beam test
  - Possible that the MQSXs will stop working under Run 3
    - As a proof-of-principle, we propose to tilt the Q3s (or the Q2s but would have to be opposite direction) for one of the IRs to demonstrate that this could replace the MQSX corrections
- The nonlinear IR correctors settings from Run 2 sextupolar ( $a_3$ ,  $b_3$ ) and octupolar ( $b_4$ ,  $a_4$ )





# Octupole IR correction (b<sub>4</sub>)



- Octupole correction based on amplitude detuning measurement in 2016
  - Improved the tune measurement from the BBQ
    - → Improved K-modulation quality





# Injection





#### Global correction

- Initial finding of the β-beat during the beam test
  - Explained by the swapped RQTL7.L3 B1/B2 and fixed (see Michi's talk)
- The injection optics was then corrected
  - No x'ing angles and not all experimental solenoids at nominal
  - Likely we can re-use the corrections, but should re-measure to be sure









#### MCS feed-down looks similar to in 2018





- We change the setting of each of the MCS arcby-arc
  - Measure the change to C-
  - Stayed fairly constant between Run 2 and Run 3
- We can create a knob that changes the b<sub>3</sub> but still keeps the coupling constant
  - Test during commissioning
  - -> If successful, we could implement in Fidel
  - -> More stable coupling at injection





#### MCO and MCD

- We measured the Q" and Q" during the beam test and the Q" was different from the Run 2
  - Would like to repeat measurement over larger dp/p
  - Measure amplitude detuning and decoherence checks to find a good setting for both the MCO and MCD (reduced strength)







# Summary injection

- The revalidation of the global corrections should be done early in the commissioning
  - Check of the new MCS "uneven" compensation is very quick so could be done at the same time
- MCD and MCO measurements can be scheduled during a quiet period

| Туре                         | Hours   |
|------------------------------|---------|
| Revalidate Global Correction | 2 hours |
| MCS feed-down                | 1 hour  |
| MCD and MCO correction       | 5 hours |
| Total                        | 8 hours |





# Squeezed optics + Ramp

















# Turn-by-turn (TbT) + K-mod





# Personal Service Control of Contr



#### Analysis code and OMC GUI



New K-modulation application by G. Trad. M. Hofer connecting it to our analysis New multiturn by: D. Jacquet, A. Calia, M. Hostettler, M. Schaumann





#### K-modulation

New application developed to trim the magnets (G. Trad)
The analysis has also been improved to incorporate the phase advance to constrain the results from k-modulation when reconstructing the β\*

Important when the distance between Q1 to the IP is close to the distance  $\beta^*$  -> Ready to precisely measure the Van der Meer Ontice ( $\beta^*$  - 10 m)







# AC – dipole excitation

- In order to have a good measurement we need to excite the beam to around 2mm peak-to-peak in the arcs
  - Even higher for amplitude detuning
- If we excite and the collimators are too close, there is a risk of blowing up the beam
  - Worst case we need to dump and start a new cycle
    - -> Hours lost
- Personal experience is that moving the collimator is complicated and time consuming
  - Define early on in the commissioning a sequence: "collimator settings for optics measurements"











#### Local corrections

- Squeeze the optics to 30 cm
- Measure the local errors
  - Reminder from Run 2:



- Not apparent where the change came from
  - Energy might have been a factor although the 2015 corrections were also valid for 2.51 TeV run!









# 3 different methods to correct the local errors

- Segment-by-Segment
- Machine learning
- Action-phase-jump

 Ideally some time between the measurement and when we need to calculate and evaluate the correction (12h minimum)











#### Global Corrections

- The input is:
  - Phase advance BPMs
  - Normalized dispersion
  - K-modulation results from the Q1s at IP1 and IP5
- Correction
  - Response matrix created in MAD-X
  - Correction is based on pseudo-inverse of the response matrix
- In a separate correction step, but based on the same input data, we will also calculate a correction for the chromatic coupling as was done in Run 2











# Sextupolar IR corrections

#### β-beating between crossing angles





If the sextupole correctors fail we will need to correct the coupling and  $\beta$ -beat (depending on crossing plane and if it is a skew or normal sextupole) as a function of crossing angle and  $\beta^*$ 

- The sextupolar error in the IR feed-down to beta-beat and coupling
- Possible that the Run 2 correction is not valid anymore

150  $\mu rad \rightarrow 100 \mu rad$ 

|                  | $\Delta  C^- $ [10 <sup>-3</sup> ] |                           |
|------------------|------------------------------------|---------------------------|
|                  | $\beta^* = 0.4 \text{ m}$          | $\beta^* = 0.3 \text{ m}$ |
| No correction    | ≤1.5                               | ≤2.0                      |
| After correction | ≤0.4                               | ≤0.6                      |

E.H. Maclean et al, New approach to LHC optics commissioning for the nonlinear era













- Difficult to measure the local coupling in the IR due to the phase advance
- New method tested during the last MD period in 2018
  - Gave promising results
- Principle of the rigid waist shift:
  - Unbalance the strength of the left and the right triplet
    - Breaks the left-right symmetry













#### 3 bunches

- Enables faster measurement and/or more data leading to better statistics
- At this stage we have validated that the optics is well under control
  - β-beat < 20 %
- Simulated failure scenarios with 3 bunches, roughly equally spaced around the ring
  - BLM triggers on total losses from 3 bunches sooner than it triggers on 1 bunch in the simulated cases!
  - Discussed with the MPP and agreed to be used when the beta-beat is below 20%





# Ramp

Would like to measure the ramp with 3 bunches for better statistics

• Better measurement of the  $\beta$ -functions

No systematic uncertainty from the timing of the kicks

Trimming out of the injection corrections similar to what was done in

2018













# Optics corrections from 60 cm to 30 cm

- We need 60cm-30cm be well corrected for
  - Machine protection
  - Deliver design luminosity to ATLAS and CMS
- Simulations showed that only correcting 1 optics is not sufficient
  - Propose to correct at 60 cm and 30 cm







# 60cm-30cm (Simulation)

 50 seeds with errors corresponding to what we expect after local corrections



| Family | $\sigma_{K_1}/K$ |
|--------|------------------|
| MQ     | 0.0012           |
| MQT    | 0.0075           |
| MQM    | 0.0012           |
| MQX    | 0.00015          |
| MQY    | 0.0011           |
| MQW    | 0.0015           |

- All of the seeds are corrected within machine protection tolerance between
   60 cm and 30 cm
- A few seeds are too large at 25cm assuming no additional corrections
  - In Run 2 we didn't recorrect at 25 cm and still well within machine protection requirements





# 60cm-30cm (Simulation)

- Luminosity imbalance between ATLAS and CMS < 1 % for most seeds
  - Around 2 % for the worst seed













# Amplitude detuning with X'ing





- The amplitude detuning and the RDTs from a<sub>4</sub> change with the x'ing angle
- → Feed down from decapole and/or dodecapoles!
- Crucial to correct in HL-LHC:
- Getting expereience now would be very valuable for the future!











# Scans with luminosity

- Nominal bunches colliding in IP1 and IP5
  - Scanning dedicated waist shifts knobs
  - Tested in MD, but time-consuming
    - -> Only planes and beams where we have suspicion something could be wrong
  - Scan the collinearity knob in IR1 and IR5 for validation of the local coupling corrections



FIG. 14. Luminosity scan of Beam 1 on the vertical plane.





# Summary Ramp + Squeezed

| Shift                  | Activities                                                                                         | Time |
|------------------------|----------------------------------------------------------------------------------------------------|------|
| Local correction       | 1. Measuring the local errors in the IR                                                            | 6h   |
| Global Corrections     | <ol> <li>Global corrections</li> <li>Refine Local coupling</li> <li>Refine non-linear</li> </ol>   | 20h  |
| Ramp + 60-30 cm        | <ol> <li>Measure the ramp</li> <li>Correct at 60cm</li> <li>Measure down to 30 cm</li> </ol>       | 8h   |
| Higher order Feed-down | <ol> <li>X'ing angle scans with<br/>amplitude detuning</li> </ol>                                  | 8h   |
| Luminosity scans       | <ol> <li>Vary the collinearity knob<br/>and waist shift and<br/>optimize the luminosity</li> </ol> | 8 h  |
| Total                  |                                                                                                    | 50h  |





# Calibration optics





## Ballistic Optics

- ullet Can reconstruct the eta at a BPM and propagate it to the IP
  - Needs very precise calibration of the BPMs
- We can use the  $\beta$  reconstruction from phase to compare with what we get from  $\beta$  from amplitude, and then use this to calibrate BPMs

relative to the arc BPMs

- Also ballistic for IR4
  - Turning off Q5 there which could help calibration of in instruments in that area



A. García-Tabarés Valdivieso





## 60 deg phase advance optics

- Would be a different optics with different settings
  - Helps in identifying underlying alignment and magnetic errors
  - In particular, the momentum compaction factor is different

| Parameter [Unit]                                  | 60°LHC      | 90°LHC      |
|---------------------------------------------------|-------------|-------------|
| $\beta_{min}/\beta_{max}$ [m]                     | 63/182      | 32/177      |
| $\eta_{min}/\eta_{max}$ [m]                       | 2.5/4.1     | 1.1/2.2     |
| Momentum Compaction [10 <sup>-4</sup> ]           | 6.9         | 3.5         |
| Transition Energy [GeV]                           | 40.0        | 53.6        |
| Natural Chromaticity at 450 GeV                   | - 60        | - 83        |
| Corrected Chromaticity at 450 GeV                 | 2           | 2           |
| Sextupole Strength at 450 GeV [Tm <sup>-2</sup> ] | 56          | 142         |
| Tune at Injection Optics (H,V)                    | 45.28/44.31 | 62.28/60.31 |





#### Mom. Comp. Factor Measurements

- Fit of relative energy (momentum) offset over frequency
- Problem: no device in LHC to measure energy → Use TbT measurements

$$\delta_p = \frac{\langle \eta_x^{\rm mdl} C O_x \rangle}{\langle (\eta_x^{\rm mdl})^2 \rangle}$$
 Measured closed orbit and model dispersion at arc BPMs

Fit using

$$\delta_p = -\left(\frac{1}{\gamma_{\rm rel}^{-2} + \alpha_C}\right) \frac{\Delta f}{f}$$

E = 6.5 TeV and therefore the relativistic gamma is negligible



Relative error between measurement and model about -3 %





#### **Beam Position Monitor Errors**

Measured closed orbit used for momentum offset calculation.



 $\alpha_c^{\text{mdl}+\Delta K}$  [10<sup>-4</sup>]





### Summary: calibration optics

- Measuring these optics would provide insight in BPM calibrations and offsets in the IR
  - Indirectly provide an additional measurement of the β-functions at the IP

| Туре                 | Hours    |
|----------------------|----------|
| Ballistic optics     | 8 hours  |
| 60 deg phase advance | 12 hour  |
| Total                | 20 hours |





#### Total time estimates

| Туре               | Hours    |
|--------------------|----------|
| Injection          | 8 hours  |
| Squeezed           | 48 hours |
| Calibration optics | 20 hours |
| Total              | 76 hours |

- Comparable in terms of time to a normal commissioning in Run 2 (2017 was 76 hours!)
  - The time estimates are based on the assumption that all systems are functional





#### Conclusion

- The beam tested provided valuable input and enabled us to identify the swapped RQTL7.L3 B1/B2
- The validity of the linear and non-linear corrections used in Run 2 remains to be tested
  - The more surprises the more challenging and time consuming calculating corrections will be
- Measuring the ballistic and the 60 deg phase advance optics would be important for understanding the calibration of the BPMs
- A very challenging but also very interesting time ahead for the Optics Measurements and Corrections in the LHC!





### Commissioning 2017...



- 3 new optics commissioned
- 11 shifts (3-days 8-nights)
- 76 hours of measurements

















# Backup





# Counteracting the coupling decay at injection

- The coupling decay is linked to the powering of the MCS (b3-spool pieces)
  - By powering them differently (dynamic part)
    - Mitigate the coupling decay
    - Still compensating the chromaticity decay









- 3 new optics commissioned
- 11 shifts (3-days, 8-nights)
- 76 hours of measurements





### Proposed MCS correction



- What is the impact of this "non local" decay compensation
  - Neglible effect on the Q"
  - Chromatic β-beating almost identical
  - Smaller difference than the missing arc (a78) in Run II













# Can we change the crossing angles to equalize the luminosity? (coupling)



- Even after sextupole correction the feed-down to coupling is still noticeable. For changes in 10 μrad the effect is small.
- A global correction could be applied for every crossing angle to correct if a problem

150 μrad  $\rightarrow$  100 μrad

|                  | $\Delta  C^- $ [10 <sup>-3</sup> ] |                           | $\frac{\Delta  C^- }{Q_{x,\text{frac}} - Q_{y,\text{frac}}}$ |
|------------------|------------------------------------|---------------------------|--------------------------------------------------------------|
|                  | $\beta^* = 0.4 \text{ m}$          | $\beta^* = 0.3 \text{ m}$ | $\beta^* = 0.3 \text{ m}$                                    |
| No correction    | ≤1.5                               | ≤2.0                      | ≤50%                                                         |
| After correction | ≤0.4                               | ≤0.6                      | ≤15%                                                         |





# Overview of the proton commisoning in Run 2

