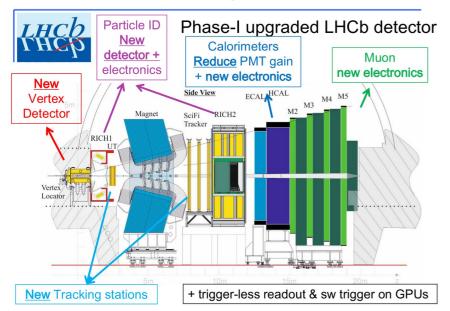


Experiment Requests and Constraints for Run-3

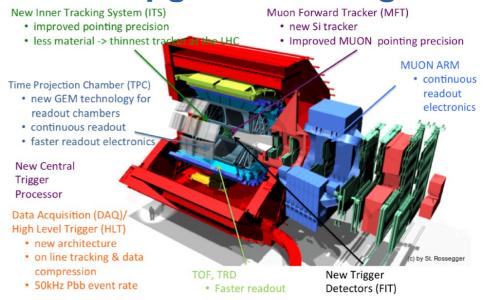
Brian Petersen

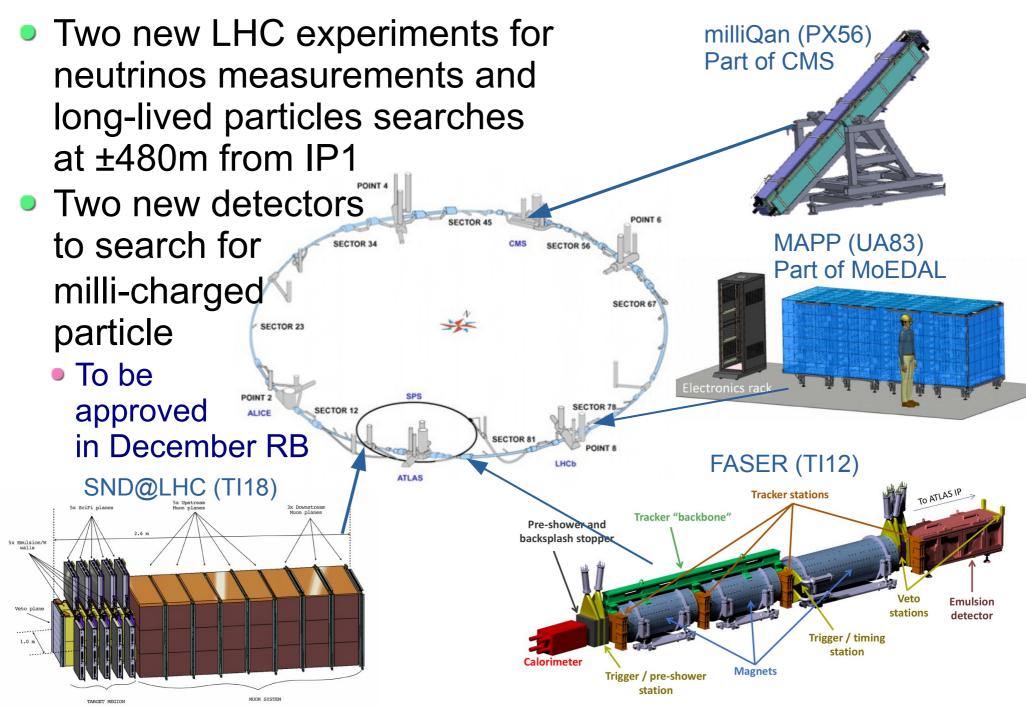

24 November 2021 10th LHC Operations Workshop

Introduction

- Major detector upgrades carried out during LS2
 - Many detectors will also be commissioning in 2022
- Improved detector capabilities enables some major changes to their normal running conditions
- Outline of talk:
 - Operation requests for p-p running
 - Operation requests for heavy ion running
 - Special run requests

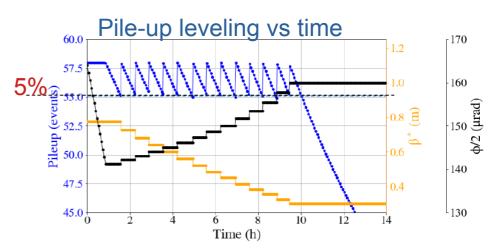
Experiment Upgrades for Run 3


- All experiments carried out major upgrades and consolidations during LS2
- For LHCb and ALICE enables them to run at higher luminosity
- Most upgrades on track for Run 3
 - LHCb upstream tracker will not be complete in time
 - LHCb requests extended TS

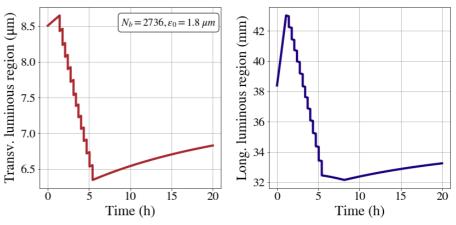

ATLAS NSW

ALICE upgrades during LS2

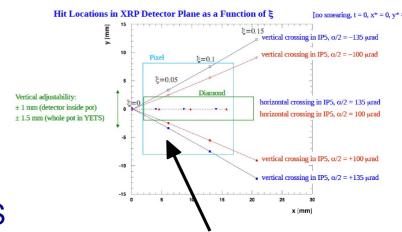
New LHC Experiments

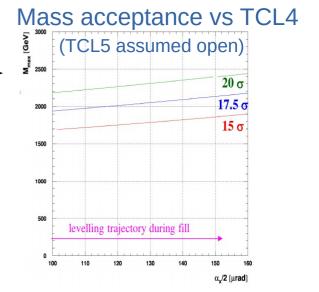

p-p Running

ATLAS and CMS


- Luminosity and pile-up limitations
 - Both experiments limited to pile-up less than ~60
 - Full BCMS scheme preferred
 - If needed, can handle some trains of 8b4e, but should bring integrated luminosity gain
 - Luminosity jumps during leveling should be below ~5%
 - Optimal use of trigger bandwidth
 - Allows to use data recorded during β* change without any issue

- Luminosity leveling with β* means the luminous region size changes significantly during a fill
- No issue with transverse size
- Longer longitudinal size helps reduce pile-up density
- For σ_z>50mm CMS lose a few % of 3-pixel track (triplets) efficiency
 - Little overall effect on physics




Lumi-region size vs time

ATLAS and CMS - Roman Pots

- Roman pot acceptance depends strongly on optics near IP
 - Driver for use of telescopic squeeze
- Flat optics could increase triplet lifetime by rotating crossing plane
 - Would reduce ξ acceptance for AFP/PPS
 - Almost total loss of acceptance for PPS diamond detectors
 - Radiation damage compensation in AFP more complicated
 - ▶ Still small preference for flat in ATLAS if lumi-region is larger
 - Any deployment of flat optics should be as late as possible
- Collimators also affect acceptance
 - Request to keep TCL4 as open as possible
 - Drives upper mass acceptance
 - CWG agreed to same mm setting as 2018 (17σ)
 - To keep RP close to beam, TCTs will need to move during β* leveling (from 2023)
 - Allows most RPs to stay at ~1.5mm from beam
 - Still open issue for one AFP RP where moving it during β* leveling would be beneficial

LHCb

- After upgrade expect to run at L=2x10³³cm-²s-¹
 - Wants to run at constant pile-up level from 2023 onward
 - Both during each fill (i.e. no drop-off at end) and over time
 - 2022 will be commissioning and early physics year for LHCb
 - Expect to take data at different pile-up levels for testing etc.
- Request to switch to vertical crossing angle at flat top
 - Horizontal crossing angle introduces difference between the two magnet polarities
 - Beam size
 - Acceptance
 - With high statistics in Run 3, could be significant systematic for some measurements

- It is fine to only deploy vertical crossing from 2023 onward
 - Assume it will be tested during MDs in 2022

ALICE

- Remains leveled during p-p running
 - Expected to level at 0.6 to 1.3x10³¹cm⁻²s⁻¹ (0.5-1 MHz rate)
- During 2018 had small issue with luminosity transients during β* leveling steps in IP1/5
 - TPC distortion corrections depend on luminosity
 - Expect this to be less of an issue in Run 3 as correction is applied with finer time granularity
- ALICE requests to have at least 3 months of p-p data before the first PbPb run to fully commission and validate the upgraded detector
 - Not required to be at full luminosity throughout period
 - Latest schedule has 5 week ramp-up and 11 weeks of physics

SIDE VIEW

Collision axis

FASER and SND

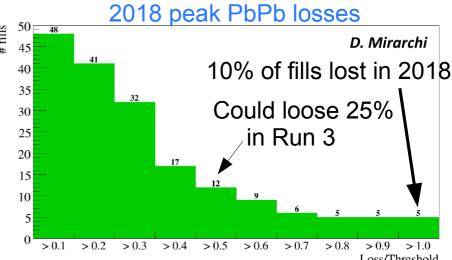
- Detector acceptance depends on crossing angle in IP1
 - 150µrad crossing angle moves collision axis by 72mm

- +18% more neutrinos for upward crossing angle
- -22% for downwards with respect to zero crossing angle
- For FASER:
 - Designed to move with crossing angle polarity (in a YETS)
 - Can not fully move on line-of-sight for downward polarity
- Preference for upward crossing angle, but inner triplet lifetime has priority
 - Still, ideally minimize the number of polarity flips
- Both experiments needs to exchange emulsion in TS
 - Preference for regularly spaced TS (i.e. every 25-30/fb)
 - Should also be possible to exchange in a long (scheduled) access

Heavy Ion running

Luminosity Limits and Sharing

- All four main experiments participate in HI program
- ATLAS, CMS and LHCb: no limit for PbPb luminosity
- ALICE will likely need to leveled to 6x10²⁷cm-²s-¹
- With 50ns bunch spacing cannot maximize colliding bunches in all experiments at same time
 - Have to share between experiments


Integrated luminosity for 24 days of physics at 50% eff:

_	Filling scheme	\mathcal{L}_{tot} IP1/5	\mathcal{L}_{tot} IP2	\mathcal{L}_{tot} IP8	From R. Bruce
-	1240b_1240_1200_0	2.5 [2.6]	2.7 [2.8]	0 [0]	_
	1240b_1144_1144_239	2.4 [2.5]	2.7 [2.8]	0.18 [0.21]	In nb ⁻¹
	1240b_1088_1088_398	2.4 [2.4]	2.6 [2.7]	0.30 [0.34]	[] is from
	1240b_1032_1032_557	2.3 [2.3]	2.5 [2.6]	0.39 [0.44]	alternate
	1240b_976_976_716	2.2 [2.2]	2.5 [2.6]	0.46 [0.50]	calculation
75ns:	733b_733_702_468	1.7 [1.8]	1.9 [1.9]	0.35 [0.36]	_

- 50ns bunch spacing still provides best option for all
 - <10% loss for IP1/2/5 to give good luminosity for IP8</p>

Collision Energy for PbPb?

- Run-2 PbPb run at E=6.37Z·TeV and 733 bunches
- Run 3 could be at E=6.8Z-TeV and 1240 bunches
- Since there is no collimators due to missing 11T dipoles this could lead to more dumps
 - At E=7Z·TeV estimated factor
 ~2.1 higher sensitivity

- Expect this can be mitigated through use of crystal collimators during PbPb running
- If not, could lower risk by staying at E=6.37Z·TeV
 - Not a large loss to physics and easier to combine with Run 2
- Decision should be taken by summer 2022
 - Before large MC simulation campaigns are started

pp Reference Runs for HI

- Requests for p-p reference data in 2022
 - ALICE: 3/pb at 0.5T field running at full readout rate (1MHz)
 - ATLAS: 350/pb (for 2/nb PbPb) roughly x4 the PbPb NN-lumi
 - CMS: 150/pb (for 2.3/nb PbPb) ~x1.5 the PbPb NN-lumi
 - LHCb: >25/pb
- ATLAS and CMS requests can be optimized by increasing pile-up for faster accumulation
- ALICE limited by readout rate, so sets length of p-p ref.
 run
 - Expect to need 5 days of p-p running plus 2 days for setup
 - Other experiments can optimize pile-up vs integrated luminosity
- More p-p reference data will be needed for future runs
- Optimal scheduling of p-p ref. run still to be determined

HI Running in Run 3

- Current plan for HI running in Run 3:
 - 1 month of PbPb in 2022 (including p-p reference run)
 1 month of pPb in 2023 (including p-p reference run)
 2 months of PbPb in 2024 (including p-p reference run)
- The extended run in 2024 was added when 2021 run was canceled
 - It also helps with machine "cool-down" (how much is needed?)
- With 23/24 EYETS and O-O/p-O run in 2024 this leaves rather little time for p-p running in 2024
- If extra year added, some options for re-balancing:
 - Only O-O/p-O in 2024 and 2 month PbPb in 2025
 - If EYETS still needed, might move start of YETS earlier?
 - 1 month of PbPb in both 2024 and 2025
 - Depends if cool-down is needed for LHC LS3 work
 - Could also move pPb to later part of Run 3
- Expect this to be discussed in Chamonix workshop

Special Run Requests

LHCf Low-µ Run Request

- Requests a high statistics low-µ run with upgraded DAQ
 - "Combined" data-taking with ATLAS, if possible
 - Detectors not rad-hard needs to be installed/removed in TAN (~1 shift)
- Beam and run parameters requested:

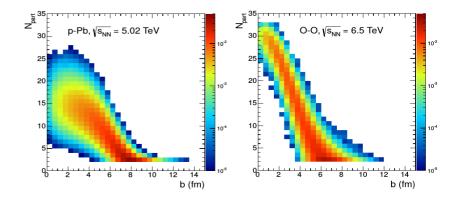
Beam parameters for the LHCf run with $p + p$ collisions at $\sqrt{s} = 14 \text{ TeV}$			
Parameter	Value		
Colliding bunches	~ 500		
Minimum bunch spacing	$200\mathrm{ns}$		
Luminosity (cm ⁻² s ⁻¹)	$\lesssim 10^{30}$		
Inelastic cross section (mb)	80		
μ (average n. of collisions per BC)	0.14 < 0.02		
Beam crossing	vertical, downward		
Beam crossing angle (µrad)	best: 290 (total)		
β* (m)	best: $\sim 10 \ (\gtrsim 1)$		

Run parameters for the LHCf minimum physics program with $p + p$ collisions at $\sqrt{s} = 14 \text{ TeV } (L = 10^{30} \text{ cm}^{-2} \text{s}^{-1})$			
Parameter	Value		
Number of $p + p$ collisions per detector position	$\sim 3 \times 10^9$		
Delivered integrated luminosity per detector position (nb ⁻¹)	~ 40		
Recorded integrated luminosity per detector position (nb ⁻¹)	~ 20		
Collision rate at IP1 (kHz)	80		
Arm1/Arm2 acceptance Req. 2 positions	~ 0.12		
Hit rate on Arm1/Arm2 (kHz)	~ 10		
Typical DAQ rate (kHz, including dead time)	~ 1.0		
Net operation time at max rate (h)	~ 24		
Net operation time at 600 Hz with ATLAS (h)	~ 48		
Total number of collected type I and II π^0 events	$\sim (2 \div 3) \times 10^6$		
Total number of collected η events	$\sim 6 \times 10^4$		

- LPC run proposal to minimize overall impact:
 - Install detector in 2022 TS and do run with vdM optics (β*=19m)
 - ▶ Use offset leveling to run at desired µ value
 - Filling scheme with 152 bunches at μ~0.02 would need ~4 days at 50% eff.
 - Large synergy with vdM scan if done in same period
 - Also useful for having optimal luminosity precision for the run

CMS Low Pile-up Run

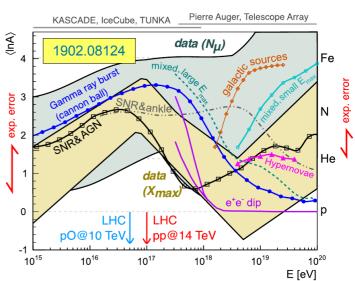
- Expect CMS to request "low" pile-up run (μ~2-3)
 - Primarily for precision EW measurements
 - W and Z cross sections
 - W mass measurement
 - Similar to run taken for ATLAS in 2018
- Integrated luminosity target of ~0.5/fb
 - Would take around two weeks in normal running conditions
 - Expect it could be done with offset leveling with other experiments running normally apart with longer fills
 - Can this be done with β* leveling in IP1?
- Optimal schedule is early 2023
 - Fully commissioned and optimized detector
 - Radiation damage degradation minimal
 - Ideally close to vdM scan for optimal luminosity precision


Two High β* Runs

- β*=90m for TOTEM inelastic xsection with new T2 det.
 - T2 must be installed in TS before HI period as it is not rad-hard and cannot be removed/installed without ramping down CMS solenoid
 - Request for μ =0.04-0.1 for ~6 hours (~1/nb, no stable beam)
 - Will need few days of beam preparation before TS,
 - Expect this to also be useful for very high β* run (part of the same de-squeeze)
- β*=(3,6) km for elastic scattering in CNI region
 - For ATLAS (ALFA) and TOTEM
 - ATLAS requests early run due to radiation damage to ALFA
 - Used to measure rho parameter at highest possible energy
 - Very low physics rate: ~65 Hz for elastic signal only
 - Requires special collimation scheme (possibly crystals?)
 - 4-5 days of physics to record 350-400/pb at 50% eff (~Run 2)

O-O and p-O Runs

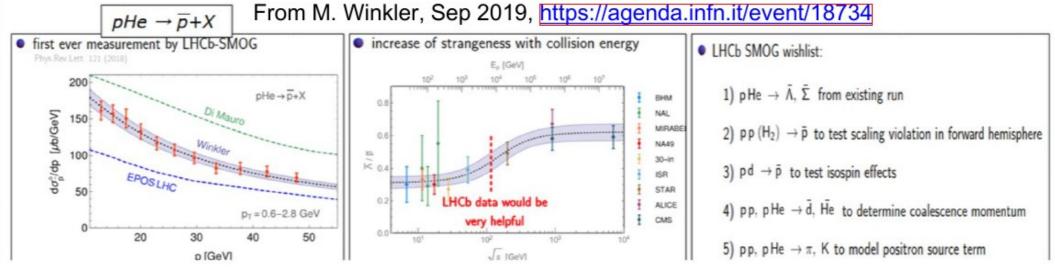
- Plan a short (1-week) run of O-O and p-O collisions
- Oxygen-Oxygen collisions can be used to study emergence of collective effect in small systems



 Study bulk-particle production, such as flow harmonics and charged-particle energy loss

 Proton-Oxygen collisions long-standing request from cosmic-ray community

- Will improve modeling of high energy air-showers
- Air-shower models critical in extracting mass of cosmic ray (lnA), which helps identify the source
- Could also help resolve discrepancy between muon density and shower maximum observations in cosmic rays



Luminosity and Energy for O-O/p-O

- For O-O around 0.5/nb is sufficient for a comprehensive soft physics measurement programme
 - Expect it can be recorded in ~1 day with just a few bunches
 - Most time consuming is likely the setup
- For p-O request is for up to 2/nb (LHCb)
 - LHCf would like 1.5/nb at μ=0.02 and 2μs bunch spacing
 - Would take around 24 hours with 36 bunches
 - LHCf again requires downward polarity
- To minimize setup time, plan is to reuse PbPb optics
 - Means β*=0.5m in IP1/2/5 and 2m in IP8
 - Collision energy per nucleon is 6.8 TeV, higher than PbPb
- There is request to have same energy in O-O as PbPb to reuse p-p reference run from PbPb without extrapolation
 - Would add additional setup time to commission new energy
 - Until determined otherwise assume running at maximum energy
 - Also the preferred solution for p-O from LHCf/LHCb
- Would like to keep the total time to no more than 1 week
- Experiments would like run in 2023 while machine prefers 2024

p-He Collisions at Injection Energy

- LHCb request for p-He (SMOG) at injection energy
 - Measure anti-proton production to help understanding of cosmic anti-proton flux excess
 - Additionally some nuclear medium measurements

- LHCb need VELO in closed position for measurement
 - Not compatible with nominal beam size at injection energy
 - Will require accelerator work on having smaller beams
 - Possibly a squeeze to β*=7m at injection energy?
 - Actual physics data taking is three hours with 50-100 bunches
 - Run not before 2023 as detector and SMOG2 to be commissioned

Baseline for Special Runs in Run 3

- Have made proposal for Run 3 special run schedule
 - Comes out at roughly one week per year
 - Should fit in with accelerator wishes (mainly on O-O)

Special run type	Experiment	Duration	When
VdM scans etc.	All	2-3 days	Every year after TS
Low-µ (<0.02) p-p	LHCf	~4 days	2022 after TS
β*=90m	TOTEM	~3 days	2022 after last TS
β*=(3,6) km	ATLAS,TOTEM	4-5 days	Early 2023
Low-µ (2-3) p-p	CMS	(2 weeks)*	Early 2023
p-He at 900 GeV	LHCb	2 days	2023
O-O and p-O	All	7-8 days	2024 after TS

- * CMS low µ run not expected to affect others or machine much
- Will most likely evolve as Run 3 goes on
 - Will revisit scheduling if one more year added

Summary

Run 3 Luminosity Targets

Proton-proton production (not incl. HI reference runs)

Experiment	Run 3	Run 3+Run 4
ATLAS, CMS	160/fb	-
LHCb	25/fb	50/fb
ALICE	200/pb	-

PbPb production

Experiment	Run 3	Run 3+Run 4
ALICE, ATLAS, CMS	6/nb	13/nb
LHCb	1/nb	2/nb

pPb production

Experiment	Run 3	Run 3+Run 4
ATLAS, CMS	0.5/pb	1/pb
ALICE	0.25/pb	0.5/pb
LHCb	0.1/pb	0.2/pb

- These are minimum targets
 - Experiments can happily take more integrated luminosity

Summary

- Requests and constraints from experiments presented
 - Largely in line with what is expected at last Evian workshop
 - Have to large extent already be incorporated into planning
- ATLAS and CMS desiderata very similar to Run 2
 - Will need to gain further experience with β* leveling
 - Most limits/wishes come from forward detectors
 - To be balanced against lumi-production and machine needs
- ALICE and LHCb can now handle much higher lumi
 - Some additional requests from LHCb, but only from 2023
- List of special runs presented ~1 week per year
 - Some will require significant preparations from machine side

All experiments look forward to Run 3 starting