Classifying Anomalies Through Outer Density Estimation (CATHODE)

IML Working Group Meeting, 09.11.2021

Anna Hallin¹, Joshua Isaacson², Gregor Kasieczka³, Claudius Krause¹, Benjamin Nachman⁴, <u>Tobias Quadfasel</u>³, Matthias Schlaffer⁵, David Shih¹, Manuel Sommerhalder³

⁵University of Geneva

¹Rutgers University

²Fermi National Accelerator Laboratory

³University of Hamburg

⁴Lawrence Berkeley National Laboratory

» Anomaly Search Motivation

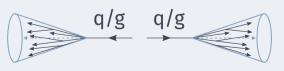
Majority of searches for new physics rely heavily on both signal and SM background models

Impossible to cover all models/phase space regions with a dedicated search \rightarrow Need **model-independent** searches

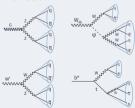
Test scenario:

- \rightarrow Dijet anomaly search $X\rightarrow YZ$, Y & Z decaying hadronically
- →Look for **resonant** new physics with **anomalous jet substructure**

Ultimately want to tell this:



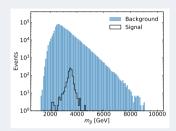
from any of these:

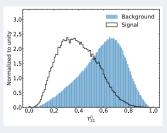


» Anomaly Search

Benchmark Dataset

- * Benchmark: LHC Olympics 2020 challenge R&D dataset (arxiv:2101.08320)
- Background: 1M simulated QCD multijet events
- * Signal: 100k W' \rightarrow YZ events where Y \rightarrow qq and Z \rightarrow qq
- * $m_{W'}=3.5\,\mathrm{TeV},~m_Y=500\,\mathrm{GeV},~m_Z=100\,\mathrm{GeV}$
- * Input: 4 variables
 - * Lower jet mass m_{j1}
 - st mass difference $\Delta m_{1,2}$
 - * Jet subjettiness ratios $au_{21,j1}$ and $au_{21,j2}$





arXiv:2001.04990

General Principle

» Anomaly Search

Given distributions of signal $p_S(x)$ and background $p_B(x)$ in some set of variables x,

Neyman-Pearson-Lemma:

→best test based on likelihood ratio

Problem: Signal is buried under large amount of background

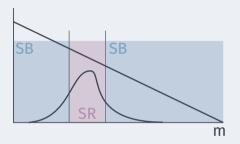
 \rightarrow We can't estimate $p_S(x)$ directly

The best we can do: Estimate $p_{S+B}(\mathbf{x}|SR)$ in "Signal Region" and $p_B(\mathbf{x}|SB)$ from region without signal ("Sidebands")

ightarrowConditional variable containing resonance: m_{jj}

We need to take LR in SR:

- \rightarrow Interpolate $p_B(\mathbf{x}|SB)$ into SR
- \rightarrow Construct estimate of LR: $\frac{p_{S+B}(x|SR)}{p_B(x|SR)}$



Get estimate of LR using:

- \rightarrow classification
- **→density estimation**

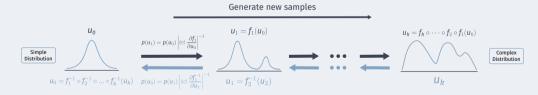
(Normalizing Flows)

» Normalizing Flows

Introduction

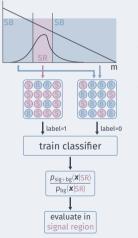
- * Flows based on random variable transformation
- * $f: U \to X; \ p(x) = p(u) \left| \frac{df(u)}{du} \right|^{-1}$
- * Learn invertible mapping f from latent variables u to data x
- * Flow: stack many invertible transformations f_i : $f = f_k \circ ... \circ f_2 \circ f_1$

$$p(\mathbf{x}) = p(f^{-1}(\mathbf{x})) \prod_{i} \left| \det \left(\frac{\partial f_{i}^{-1}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{u}) \prod_{i} \left| \det \left(\frac{\partial f_{i}}{\partial \mathbf{u}} \right) \right|^{-1}$$



» Anomaly Search

Classification Without Labels (CWoLa)

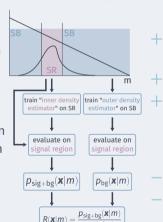


- + Simple classification task
 - Basic DNN architecture
 - Highly dependent on correlations between x and m \rightarrow Variables x need

to be hand-picked

Classification & Density Estimation

Anomaly Detection with Density Estimation (ANODE)



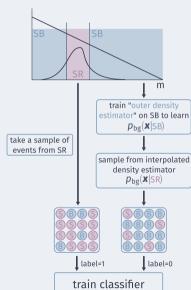
- Direct estimation of conditional densities
- Easy to interpolate p_{bg}
 - Robust against correlations between \boldsymbol{x} and \boldsymbol{m}
 - \rightarrow Arbitrary choice of ${\it x}$
- Computationally intense
- Estimation of signal contribution difficult

» Anomaly Search

CATHODE

Classifying Anomalies THrough Outer Density Estimation (CATHODE)

- + Only one density estimator needed
- + Due to interpolation: robust against correlations between x and m
 →Arbitrary choice of x
- + Final tagger based on simple classification task
- + No density estimator for signal contribution needed
- Computationally intense

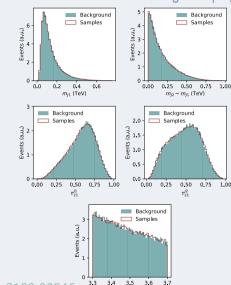


arxiv:2109.00546

» CATHODE

Training & Sampling

- * Flow trained for 100 epochs
- Model ensembling: pick 10 epochs with lowest validation loss
- * Draw m_{jj} values from a KDE in signal region
- Use these values as conditional and sample from density estimator
 →Interpolation into SR
- * We can oversample to produce more samples than we have in data
- Background densities are modelled well by flow



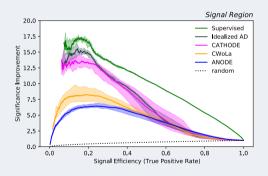
m_{ii} (TeV)

» CATHODE Performance

Most important performance measure:
 significance improvement characteristic
 (SIC)

- * "Supervised" training using signal/background labels
 →overall upper performance limit
- * "Idealized AD": distinguish actual sample vs. background-only sample from signal region →upper limit for unsupervised anomaly search
- * CATHODE shows highest SIC amongst non-idealized anomaly taggers
- * Performance reaches idealized AD limit
- * Significance improvement about factor 14

$$SIC = \frac{\frac{S}{\sqrt{B}}\Big|_{cut}}{\frac{S}{\sqrt{B}}\Big|_{no.cut}} = \frac{TPR}{\sqrt{FPR}}$$

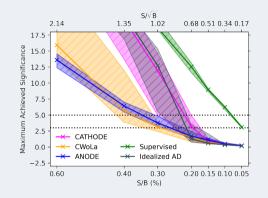


arxiv:2109.00546

» CATHODE Performance

Comparison for different amounts of signal injected

- * CATHODE outperforms other AD methods significantly down to a S/B as low as 0.3%
- * CATHODE achieves similar performance as idealized anomaly detector
- * Below 0.2% S/B: even idealized AD cannot raise significance above 3σ \rightarrow Too limited number of data points in the signal region

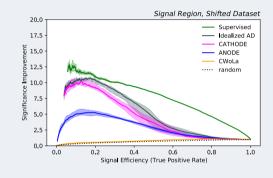


arxiv:2109.00546

» CATHODE

Robustness Against Correlations

- * Study impact of correlations between x and m_{ij}
- * Introduce artificial correlations
- * Add 10% of corresponding m_{jj} value to m_{j1} and $\Delta m_{1,2}$
- * All methods suffer performance
 →"Smearing" of variables
- * CWoLa performance completely breaks down
- * CATHODE retains good performance, similar to idealized AD

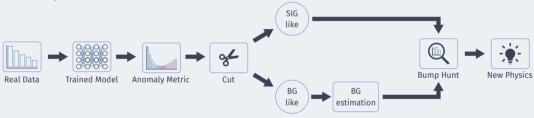


arxiv:2109.00546

» Summary

- * Investigation of dijet resonances with anomalous jet substructure using normalizing flow–based density estimation & classification
- * Introduction of new method: CATHODE that combines the advantages of purely density estimation—based (ANODE) and classification-based (CWoLa) approaches
- * CATHODE outperforms all other non-idealized anomaly detectors
- * Performance similar to idealized anomaly detector
- * Robust against correlations between features x and conditional variable m_{jj}
- * Future studies
 - * Other datasets/topologies
 - * Study sensitivity for different types of anomalies (e.g. very broad resonances)
 - * Studies using more (low-level) features

General procedure:



» Autoregressive Flows

Autoregressive property:

$$p(x) = \prod_{i} p(x_i|x_{1:i-1})$$

Conditional densities depend on trainable parameters:

$$p(x_i|x_{1:i-1}) = \mathcal{N}(x_i|\mu_i, (\exp \alpha_i)^2)$$

$$\mu_i = f_{\mu_i}(x_{1:i-1})$$

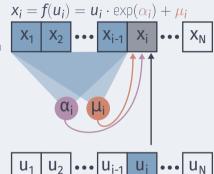
$$\alpha_i = f_{\alpha_i}(x_{1:i-1})$$

- →Earlier variables must not depend on later variables
- \rightarrow Solution: stack transformations into a normalizing flow, change ordering of the x_i after each transformation

Introduction

hase

distribution



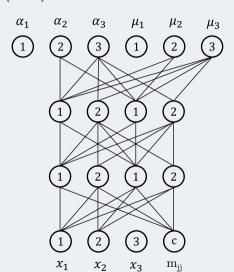
Autoregressive property → Jacobian is upper triangular

$$\left|\det\left(\frac{\partial f}{\partial \mathbf{u}}\right)\right| = \exp\left(\sum_{i} \alpha_{i}\right)$$

[2/4]

Architecture

- * DNN architecture to implement a single f_i in autoregressive flows (1502.03509)
- * Compute lpha and μ in one forward pass
- * Outputs α_j and μ_j only connected to inputs $\{x_1,...,x_{j-1}\}$ \rightarrow autoregressive property
- * No connection dropped for conditional input m_{ii}



- Stack MADE networks to build "Masked Autoregressive Flow" (MAF)
- * Learn tranformation $\mathbf{u} = f^{-1}(\mathbf{x})$ from input features \mathbf{x} to $\mathbf{u} \sim \mathcal{N}(0, \mathbb{I})$
- * Compute p(x) with normalizing flow from p(u)
- * Minimize NLL loss $\mathcal{L} = -log(p(\mathbf{x}))$
- * Architecture used for both density estimators

