Enhancing Analysis Performance
and Reproducibility

with Containers and the Cloud

Ricardo Rocha, CERN IT - ExaHealth 2021
https://indico.cern.ch/event/1078121



https://indico.cern.ch/event/1078121

Ricardo Rocha

Computing Engineer - CERN Cloud Team

Kubernetes and Containers, Networking and SDN
GPUs and other Accelerators, Machine Learning
Cloud Native Computing Foundation (CNCF)
Representative of CERN in the CNCF and End User Community
Member of the CNCF Technical Oversight Committee (TOC)
https://www.cncf.io/people/technical-oversight-committee/

Lead of the CNCF Research User Group

https://qithub.com/cncf/research-user-group

@ahcorporto ricardo.rocha@cern.ch



https://www.cncf.io/people/technical-oversight-committee/
https://github.com/cncf/research-user-group
mailto:ricardo.rocha@cern.ch

Will the infrastructure run my software
in 10 years?



Machine Default | Optimization off | Maximum | ’Value’ of -O
IBM/AIX noopt -03 -02
HP/UX noopt +03 +02
Solaris noopt -04 -03
Tru64 UNIX (Digital-UNIX) | -04 -00 -04 -04
SGI -01 -00 -03 -02

7.3 Important Platform Dependent Differences

On most platforms at CERN the recommended Fortran compiler is called £77. The exception is HP/UX where
you are recommended to use Fort77 rather than 77 since it allows you to specify libraries in a way which is
compatible with all the other platforms. For AIX on the RS/6000 the Fortran compiler is called x Lf, but in more
recent versions of AIX the name f77 can also be used.

The table below shows the minimum command that should be used for compiling and linking in the CERN envi-

ronment.
Machine Compilation only Compiling and/or Linking
IBM/AIX xIf -c -gextname xIf -gextname
HP/UX fort77 -c +ppu fort77 +ppu
Others f77 -c £77

As we saw in the section above, by default Unix compilers generate an executable module. The option “-c”
(compile only) generates an object file but causes the linking phase to be surpressed.

The options -gextname on AIX and +ppu on HP/UX are explained in “Compiling and Linking Options” on
page 50 and are ESSENTIAL for compatibility with the CERN Program Library.

CERN Unix User Guide, September 2002 https://cds.cern.ch/record/291184/files/cer-000212302.pdf
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And we could go on...

Will i still be able to access my data?

Will my data format still be readable?
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Evolve infrastructure and applications separately

Shared kernel, but distinct operating systems  ~1#sase inage with explicit versioning

2 #
3 # Can be different from the host 0S running the container,
. 4 # which could be running Cent0S or other distribution

Immutable, tagged images 5 FROM ubuntu:16.04

7 # Trackback to image maintainer
. . . . . . 8 MAINTAINER ricardo.rocha@cern.ch

Sharing using private and public registries 9 o .
10 # Dependencies with explicit versioning
11 RUN apt-get update
12 RUN apt-get install -y gcc:7.5.0 wget:1.12
13 RUN pip install scipy:0.18.1
14

. 15 # Any custom files, binaries, even data can be added
Public 16 COPY ./specialfile /
Container Registry 17
18 # Anything else can be run as part of the image build
19 RUN wget http://domain/customscript -0 /run.sh
20
21 # Default command being run on start
22 CMD ["/run.sh"]

Push Pull

Developers/

Automated Build Users/Customers
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In Depth: Linear Regression

Just as naive Bayes (discussed earlier in In Depth: Naive Bayes Classification) is a good starting point for classification tasks, linear regression models are a good starting point for
regression tasks. Such models are popular because they can be fit very quickly, and are very interpretable. You are probably familiar with the simplest form of a linear regression model
fitting a straight line to data) but such models can be extended to model more complicated data behavior.

In this section we will start with a quick intuitive walk-through of

in data.
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Julia

using RDatasets, Gadfly
plot(dataset(“datasets","iris"), x="Se

Sapawan

+ eigen(x)

+ Eigen{Complex{Float64},Complex{Float

64}, Array{Complex{Float64},2},Array{Co
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eigenvalues:
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python notebook

+ smatplotlib inline

from ipywidgets import interactive, fixed

We explore the Lorenz system of differential
equations:

Let's change (s, f, p) with Ipywidgets and
‘examine the trajectories.

from lorenz import solve_lorenz

w = interactive(solve_lorenz,sigma
w

interactive(children=(Floatslider(
description='signa’, max=5
atslider(value=2. 666666666666...

R

* ggplot(data=iris, aes(x=Sepal.Len

1
[1): head(iris)
Sepal.Length Sepal Width Petal.Length
51 35 14
a9 30 14

Mode: Command @ Ln1,Col1 Lorenzipynb
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Turn a GitHub repo into a collection of
interactive notebooks

Have a repository full of Jupyter notebooks? With Binder, open those notebooks in an
executable environment, making your code immediately reproducible by anyone, anywhere.

Build and launch a repository

GitHub repo or URL
https://github.com/jakevdp/PythonDataScienceHandbook ]
Git branch, tag, or commit Path to a notebook file (optional)
master Path to a notebook file (optional) File »
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Containers & Open Data in Science
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Standardized platforms allow researchers to run each other’s
software — noinstallation required. By Jeffrey M. Perkel

urphy’s law for the digital age:
il

profic
meu Dockerfiles)

ntin migrating Docker mnrgummn

clusters and share them with colleagues.

luwurk Coll
frontof. fulof pe i But It luate,
8
set each
Docker is a software tool that generates The  WilliamCoon,
‘containers’ demo ", Marwick Medical School in Boston, Massachusetts,

environmentsthat can be shared and reused.
C

Today, a growing collection of services
onfu-

spent weeks writing and debugging an algo-
that

rithm,

structure, fostering reproducibility. Docker

sion. Using

‘Which include

Binder, CodeOcean, Colaboratory,Gigantum

“leould have just gotten up and running. using

Y
lenges of installing and updating research

ithout

allof

inthe cloud ~ hesays.
fware. However, software. They twar
Marwick t the Univer i

sity of had become network of

Nature | Vol 575 | 7November 2019 | 247

gy &tools

Work/ Tech

language R pr cloud
ntofour “[Theylcan
platforms at ) this
odyssey throughwebsites suchasStackOver-  The easiest way to try Binder is at training and learning.” he explains.

flow and GitHub. “One of the hardest parts of
reproducibility is getting your computer set

mybinder.org, afree, albeit computationally
limited, website. Or, for greater power and
it he

computerissetup. Thatis just ridiculously dif
ficult” says Kirstie

Bin
derHubs'instead. The Alan Turing Institute has

atthe Alan ondon.

Easier evaluation

Docker reduces that to a single command
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Open is not enough
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flows for reproducible and reusable research more widely in other

O pen science and reproducible research have become per-

and funding bodies'. The understanding is that open and
reproducible research practices enable accelerating

and reuse in HEP

future projects and discoveries in any discipline. In the struggle to
take concrete steps in pursuit of these aims there has been much
discussion and awareness-raising, often accompanied by a push to
‘make research products and scientific results open quickl

Although these are laudable and necessary first steps, they
are not sufficient to bring about the transformation that would
allow us to reap the benefits of open and reproducible rescarch.
Itis time to move beyond the rhetoric and the trust in quick fixes
and start designing and implementing tools to power a more
profound change.

Our own experience from opening up vast volumes of data is
that openness cannot simply be tacked on as an afterthought at the
end of the scientific endeavour. In addition, openness alone does
not guarantee reproducibility or reusability,so it should not be pur-
sued asa goal i itself. Focusing on data is also not enough: it needs

To set the stage for the rest of this piece, we first construct a more
nuanced spectrum in which to place the various challenges facing
HEP, allowing us to beter frame our ambitions and solutions. We
choose to build on the descriptions introduced by Carole Goble*
and Lorena A. Barba* shown in Table 1

"hese concepts assume a rescarch environment in which mul-
tiple labs have the equipment necessary to duplicate an experiment,
which essentially makes the experiments portable. In the particle
physics context, however, the immense cost and complexity of the
experimental set-up essentially make the independent and com-
plete replication of HEP experiments unfeasible and unhelpful
HEP experiments are set up with unique capabilities, often being
the only facilty or instrument of their kind in the world; they are
also constantly being upgraded to satisfy requirements for higher

Th Lary

Hadron Collider (LHC) are prominent examples. It is this unique-

tobe accompanied b softwae, wotkﬂowl and explanations,al of
hich

Teearch hf«yde. ready Ier a umdy open release with the oy

ness that makes the data valuable for preservation so
Y comparison,

s asa goal
requires the adoption of new research practices during the data
analysis process. Such practices need to be tailored to the needs
of each given discipline with its particular rescarch environment,
culture and idiosyncrasies. Services and tools should be developed
with the idea of meshing scamlessly with existing research proce-
dures, encouraging the pursuit of reusability as a natural part of
researchers daily work (Fig. 1). In this way, the generated research
products are more likely to be useful when shared openly.

In tackling the challenge of enabling reusable research, we
keep these ideas as our guiding light when putting changes into
practice in our community—high-energy physlc! (HEP) Here, we
illustrate our approach, particularly through our work at CERN,
and present our communitys requirements and rationale. We
hope that the explanation of our challenges and solutions will

d the practical fwork-

P
Our considerations here really begin after gathering the data.
“This means that we are more concerned with repeating of verifying
the computational analysis performed over a given dataset rather
than with data collection. Therefore, in Table 2 we present a varia-
tion of these definitions that takes into account a rescarch environ-
‘ment in wl set-up’ refers to the
of a computational analysis of a defined dataset, and a ‘lab’ can be
thought of as an experimental collaboration or an analysis group.
In the case of computational processes, physics analyses them-
selves are intrinsically complex due to the large data volume and
algorithms involved. In addition, the analysts typically study more
than one physics process and consider data collected under dif-
ferent running conditions. Although comprehensive documenta-
tion on the analysis methods is maintained, the complexity of the
software implementations often hides minute but crucial details,

'CERN, Geneva, Switzerland. Sheffield Universit. Sheffield, UK. *Stuttgart University, Stuttgart, Germany. Helsinki Institute of Physics, Helsinki,Finland.

“Cambridge University, Cambridge,

York, NY, USA. "University of Washington, Seattle, WA, USA. *University of Notre Darme,
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resent address: DataCite, German

National Library of Science and Technology, Hanover, Germany.
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Our own experience from opening up vast volumes of data is that
openness cannot simply be tacked on as an afterthought at the end of
the scientific endeavour. In addition, openness alone does not
guarantee reproducibility or reusability, so it should not be pursued as
a goal in itself. Focusing on data is also not enough: it needs to be
accompanied by software, workflows and explanations, all of which
need to be captured throughout the usual iterative and closed research

lifecycle, ready for a timely open release with the results.

nature
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Can we also build on this to
scale out our analysis?



Kubernetes

Spun out of Google as an open source
container orchestration project

Built on lessons from Borg and Omega

BRENDAN BURNS,
BRIAN GRANT,

DAVID OPPENHEIMER,
ERIC BREWER, AND
JOHN WILKES,
GOOGLE INC.

Borg, Omega, and
Kubernetes

LESSONS
LEARNED FROM
THREE CONTAINER-

hough widespread interest ~ MANAGEMENT
in software containers SYSTEMS OVER
is a relatively recent A DECADE

phenomenon, at Google we

have been managing Linux containers at scale for
more than ten years and built three different container-
management systems in that time. Each system was heavily

Loosely coupled collection of components to deploy, maintain and scale workloads

Declarative, Load Balancing, Self Healing, Auto Scaling

Service and Batch Workloads




Kubernetes Borg, Omega, and

Kubernetes

LESSONS
LEARNED FROM
THREE CONTAINER-

45.000 contributors, 148.000 code commits |  sreoweues ThouehW‘despreadmerest MieisEue

Largest open source project after kernel

BRIAN GRANT, in software containers SYSTEMS OVER
is a relatively recent A DECADE
phenomenon, at Google we

DAVID OPPENHEIMER,

83.000 pull requests, 1.1M contributions SRR

JOHN WILKES,

have been managing Linux containers at scale for
more than ten years and built three different container-

2000-'- CO ntributing Com panies GOOGLE INC. management systems in that time. Each system was heavily

Google, RedHat, VMware, Huawei, Microsoft, IBM, Fuijitsu, ...
Open community welcome to contributions
Special Interest Groups (S1Gs) : Auto-Scaling, Multi-Cluster, Scheduling, ...

Largely used both in Research and Industry
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Lingua franca of the cloud
Managed services offered by all major public clouds
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Multiple options for on-premise or self-managed deployments
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Rediscovering the Higgs

Like it's 2019...



Challenge: H—4l re-discovery on CMS Open Data

Benchmark analysis based on Open LHC Data.

Goal: Fit it within a live demo for 20-minute Keynote at KubeCon EU 2019
Learn something about cloud-native analysis, reproducibility, Open Data.

Have some Fun. \s=7TeV,L=23f", \s=8TeV,L=11.6fb"
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https://www.youtube.com/watch?v=CTfp2woVEkA

Challenge: H—4l re-discovery on CMS Open Data

what would this look like in a cloud-native approach?
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70 TB of Physics Data  ~25000 Files “



[16:01:21] @ /Users/lukasheinrich/Code/awesomedemo/higgs-demo/CMSSW_5_3_32/src $ \root -b
KEKEKKKKKKRKRERKRKRRKRRRkRkkkkkkkkkkkkkkkkkkkkkkkkkkk

WELCOME to ROOT
Version 5.32/00 2 December 2011

You are welcome to visit our Web site
http://root.cern.ch

* X X X X % % *
* % X X X X * X

KRRk Rkkkkhkkkhkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkk
ROOT 5.32/00 (branches/v5-32-00-patches@42372, Jun 10 2014, 18:26:00 on linuxx8664gcc)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010

cmsopendata/cmssw_5_3_32

‘ By cmsopendata ¢« Updated 4 months ago
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Cluster - Image - Data -
Creation Pre-Pull Stage-In

5 min 4 min 4 min 90 sec

vs ~24h for the original analysis



Machine Learning / Kubeflow

Scale out / distributed training, with CERN OpenLab
Example: Fast Simulation with 3D GANs

TensorFlow Based

Can benefit from (very) large numbers of GPUs, TPUs

Mirrored Strategy Multi Worker Mirrored Strategy TPU Strategy




Results using the Google Cloud

From 1 to 128 GPUs: 3550 to 35 seconds per epoch
x100 speedup at the same total cost

TPUs seem to be particularly cost effective
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Challenges Remaining

Data Movement
Data Gravity and Egress Costs
Avoiding lock-in to public cloud providers

Bridging with the HPC world



Questions?



