Fast timing with nanocrystalline lead halide perovskite thin films on scintillating wafers

K. Děcká^{1,2}, J. Král², F. Hájek ^{1,2} P. Průša²,
V. Babin¹, <u>E. Mihóková^{1,2}</u> and V. Čuba²

¹Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic ² FNSPE, Czech Technical University in Prague, Prague, Czech Republic

Fast timing

Promising candidates Cesium lead halide perovskites CsPbX₃ (X=CI, Br, I)

fast Mott-Wannier exciton emission

CsPbX₃ (X=Cl, Br, I) nanocrystals

L. Protesescu et al., Nanolett. 15, 3692 (2015)

application potential for solar cells, LEDs, displays ...

High quantum yields Decay times 1-29 ns Tunable emission over all VIS range depending on nanoparticle size and composition (X)

CsPbBr₃ nanocrystals

poor chemical stability in air

solution : encapsulation in inert matrices or organic polymers

Presentation K. Děcká

corner sharing PbBr₆⁴⁻ octahedra

CsPbBr₃ nanocrystals for scintillator applications

The most serious issue: poor stopping power

Solution: heterostructure

R. M. Turtos et al., Npj 2D Materials and Applications 3 (1), 37 (2019)

To fabricate CsPbBr₃ thin films on scintillating wafers

To test whether such nanocomposite can be a candidate for fast timing detector

Hot injection (HI) synthesis of CsPbBr₃

L. Protesescu et al., Nanolett. 15, 3692 (2015)

Hot injection (HI) synthesis of CsPbBr₃

L. Protesescu et al., Nanolett. 15, 3692 (2015)

DDAB – didodecyldimethylammonium bromide

X-ray powder diffraction

Absorption and photoluminescence

Lack of the **peak (dip)** at 310 nm in **absorbance** and **PLE spectra** (characteristic of Cs₄PbBr₆ impurity) confirms the purity of CsPbBr₃ phase

Small Stokes shift – problem of reabsorption

CsPbBr₃ thin film fabrication

Spin coating on wafer: glass, GGAG:Ce

Radioluminescence of thin films on glass

Dynamic process – more intense RL

– less material used (0.6 mL vs 1.6 mL for 40

layers of the static process)

Static process – much higher homogeneity

Is homogeneity important for intended application ?

Thin films on GGAG:Ce - mean thickness

SEM images of the thin film edge

10000 1.0

SFZU:

5020x 22.7+16, ut

SFZU:

10003 1.0

9.30 5020* 22.7*16, Ls

50 layers Mean thickness: ~ 3 μ m **Static process** 2.97 µm 3.7 µm Much better 3.5 µm homogeneity 2.47 µm 2.4 µm 13.30 5080+ 22.8+17. Ltt 2560x 45,6x34, µt SFZU: **Dynamic process** Mean thickness: ~ 3 μ m 0.6 mL 5.24 µm 1.08 µm 5.24 µm 1.31 µm 3.37 µm 5.58 µm 1.01 µm 3.34 µm 5.45 µm 1.7 µm 1.55 µm 1.13 pr 1.13 µm

18009 1.0

S FZU

10.39 1000x 11.4+8.5 µm

GGAG:Ce wafer

glass wafer

Overall RL intensity of nanocomposite CsPbBr₃ on GGAG:Ce is higher than a simple sum of two emissions

Both emissions are enhanced

CsPbBr₃ probably enhanced by absorption and subsequent reemission of GGAG:Ce light cannot be easily explained

CsPbBr₃ thin film on GGAG:Ce

Enhancement of GGAG:Ce emission

SEM image, static method

CL image, static method

Thin film has cracks

520 nm light emitted by CsPbBr₃**560 nm light** emitted by GGAG:Ce

Cracks probably serve as light guide for GGAG:Ce emission

CsPbBr₃ on glass: static process (50 layers)

Short time window

Two subnanosecond components 40 ps, 350 ps

More than **50% of light** emitted within subnanosecond time gate

CsPbBr₃ on GGAG:Ce

Short time window

Ultrafast CsPbBr₃ emission preserved

CsPbBr₃ on GGAG:Ce

Short time window

1x10 ⁴ Static process	Sample	Rise time	Decay time	Light sum
ร่า1x10 ³ อุ	GGAG:Ce	8 ns	200 ns	63 %
ie pp1x10 ² Dynamic process Pure GGAG:Ce			660 ns	37 %
	Static process	50 ps	80 ps	1 %
			700 ps	1 %
			long	98 %
1x10 ⁰ 20 25 30 35 40 45 50	Dynamic process	30 ps	120 ps	3 %
Time (ns)			770 ps	2 %
			long	95 %

Ultrafast CsPbBr₃ emission preserved

CsPbBr₃ on GGAG:Ce

Long time window

CsPbBr₃ on GGAG:Ce

Long time window

Sample	Rise time	Decay time	Light sum	1x10 ⁴
GGAG:Ce	8 ns	200 ns	63 %	ਤ 1x10 ³ ਦੁੰ Static process
		660 ns	37 %	ଞ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟୁ ଅଧ୍ୟ ଅଧ୍ୟ ଅଧ୍ୟ ଅଧ୍ୟ ଅଧ୍ୟ ଅଧ୍ୟ ଅଧ୍ୟ ଅଧ୍ୟ
Static process	50 ps	80 ps	1 %	
		700 ps	1 %	
		long	98 %	Pure GGAG:Ce
Dynamic process	30 ps	120 ps	3 %	1x10 ⁰ 0 250 500 750 1000 1250 1500
		770 ps	2 %	Time (ns)
		long	95 %	

Slow emission of GGAG:Ce preserved

CsPbBr₃ on GGAG:Ce

Short time window

Long time window

Ultrafast CsPBBr₃ emission preserved Slow emission of GGAG:Ce preserved Static process results in higher overall RL intensity Some level of the film homogeneity needed for light guiding effect

Summary

- We prepared CsPbBr₃ thin films on glass and GGAG:Ce scintillating wafer
- We compare two methods for the film preparation: Dynamic process is more effective in terms of material consumption, the static process yields much more homogeneous films
- Homogeneity of the film is important since the static films exhibited higher intensity in both the RL spectra and decays
- Synergic effect by combining CsPbBr₃ nanoscintillator with the bulk GGAG:Ce scintillator – resulting nanocomposite exhibited enhanced RL intensity while preserving ultrafast CsPbBr₃ decay
- Thin nanocomposite layer is able to perform as efficient time tagger in a sampling detector geometry

K. Děcká et al. K., Nanomaterials **12**, 14 (2021)

Thanks are expressed to all collaborators

and to

the audience for kind attention

Acknowledgements

- □ Czech Science Foundation, Grant No. GA20-06374S
- Ministry of Education Youth and Sports, project "Center for advanced applied science," No. CZ.02.1.01/0.0/0.0/16_019/0000778
- Grant Agency of the Czech Technical University in Prague, Grant No. SGS20/185/OHK4/3T/14