

The timing performance of the TOFHIR2 ASIC

J. Varela LIP and PETsys Electronics

on behalf of the TOFHIR team

Fast Timing in Medical Imaging

Valencia, 3-5 June 2022

In this talk time resolution is given in standard deviation (r.m.s.)

TOFHIR2 timing performance

TOFHIR2 timing performance

BTL Detector Module

• BTL sensor module: 16 crystal bars + SiPMs

Each bar 3x3x57 mm³ LYSO; two 3x3 mm² SiPMs glued at each end

- LYSO Crystal Arrays:
 - MIP deposits ~4.2 MeV
- Silicon Photomultipliers as photo sensors:
 - Large dark current noise due to radiation damage (up to 50 GHz)
 - Detector operated at -35°C (-45°C using TECs under development)
 - \circ ~ PDE 20-30% and Gain 1-3e5 for OV 1.5-3.5 V ~

• Readout ASIC: TOFHIR2

- o Each Front-End board has 2ASICs
- Each ASIC has 32 independent channels

BTL sensor module

Front-End board

Nominal parameters along BTL life

Integrated luminosity (fb-1)	Number of p.e.	SiPM gain	DCR (GHz)
0 (BoL)	9500	3.8 × 10 ⁵	0.001
3000 (EoL)	6000	1.5 × 10 ⁵	55 (30)

TOFHIR2 timing performance

Front-end requirements

- MIP rate
 - MIP rate: 2.5 MHz/channel
 - Low energy hit rate: 5 MHz/channel
- Timing measurement
 - Two timing measurements per event
- Amplitude measurement
 - Charge integration and ToT
- Dark counts and out-of-time pileup
 - Mitigate degradation of time resolution due to large SiPM dark count rate (DCR)
 - Cancel long LYSO signal tails to minimize pulse pile-up
 - Stabilize baseline to allow good timing with leading edge discrimination

TOFHIR prototyping

• TOFHIR1 (UMC 110 nm):

- Quick adaptation from TOFPET2
- Enabled system testing in 2019
- TOFHIR2 (TSMC 130 nm):
 - New design, DCR noise cancellation circuit
 - o TOFHIR2A
 - Full chip (32 channels) and functionality
 - Tested in 2020
 - o TOFHIR2X
 - Improved DCR cancelation and current discriminator
 - Tested in 2021
 - o TOFHIR2B
 - Improved TMR for SEE protection
 - Under test
- ASIC design done by PETsys Electronics; Integration in BTL done by LIP

Chip dimensions: 8.5x5.2mm²

TOFHIR2 channel

Features:

- Branches: T, E and Q
- Three leading edge discriminators
- Full current mode implementation
- Two TACs and one QAC sharing 40 MHz SAR ADC

-			
TOFHIR2 characteristics			
Number of channels		32	
Technology		CMOS 130nm	
Voltage sup	ply	1.2 V	
Reference v	oltage	Internal	
Radiation to	lerance	Yes	
DCR noise f	ilter	Yes	
Number of a	nalog buffers	8	
TDC bin (ps)	10	
10-bit SAR A	ADC (MHz)	40	
I/O links		CLPS	
L1, L0 Trigg	er	Yes, Yes	
Maximum M	IP rate/ch (MHz)	2.5	
Max low E ra	ate/ch (MHz)	5	
Clock freque	ency (MHz)	160	

Challenges:

- Minimize the impact of DCR noise and pileup on time resolution
- Cope with high rate

TOFHIR2 timing performance

DCR noise cancellation

DLED method (*):

- Inverted and delayed current pulse is added to the original pulse
 - Delay line is approximated by a RC net (200-1800 ps)
 - Short output pulse (< 25 ns)
 - Noise and baseline fluctuations are mitigated

*) A. Gola, C. Piemonte and A. Tarolli, "Analog Circuit for Timing Measurements With Large Area SiPMs Coupled to LYSO Crystals," in *IEEE Transactions on Nuclear Science*, vol. 60, no. 2, pp. 1296-1302, April 2013.

Simulation of time resolution in EoL conditions:

- Dark Count Rate: 55 GHz
- MIP pulses with 6000 p.e.
- SiPM gain: 1.510⁵

	SiPM ouput current	DCR module output current
Slew rate (µA/ns)	135.9	9.93
Noise r.m.s (µA)	24.5	0.51
$\sigma_{ m noise}$ / SR (ps)	180	52

Time resolution is improved by a factor 3.5

Pulse shape of LYSO excited with UV laser

- LYSO pulse: 9500 pe, SiPM gain 3.8 × 10⁵
 - UV laser tuned to generate a LYSO pulse with a given number of photoelectrons
- Pulse shape derived from discriminator threshold scan
 - The time of the leading and trailing edges are measured by the TDC1 and TDC2
- Good agreement between simulation and data.
 - The slew rate in the rising edge is 28.6 $\mu\text{A/ns}$

10

- Solid state noise
- The contributions of the amplifier noise and TDC noise to the time resolution are estimated with laser light shining on two naked SiPMs (using a beam splitter)
- The channel time resolution is derived from the measured CTR
- Fit function: $\sigma_t = \sigma_{noise}/(dI/dt) \oplus \sigma_{TDC}$
- Fit result: $\sigma_{noise} = 0.360 \ \mu A$ and $\sigma_{TDC} = 12 \ ps.$
- Electronics noise contribution to time resolution:

$$\sigma_t^{elect} = \frac{\sigma_{noise} = 0.36 \,\mu A}{SR = 28.6 \,\mu A/ns} = 13 \,ps$$

TDC performance

TDC binning:

- Typical binning is 11 ps _
 - 10 ps expected
- Low dispersion of binning _

sigma=0.4 ps ٠ arity Binning 2000 Li 0.5 Entries 2032 Mean 11.28 erential Non Std Dev 0.4202 1800 1600 -0.5 1400 Data for 2032 TACs 1200 1000 in 4 ASICs 700 800 TDC Code (Fine Time) 600 400 E 200 E 80 00 120 140 160 180 200 TDC bin (ps) drallok -0.5 Differe -2 -300

TOFHIR2_timing performance

TDC linearity:

Integral Non-Linearity [LSB]

~ 3

TD@Code (Pine Time) TDC Code (Fine Time)

- $DNL < \pm 0.5 LSB$

$INL < \pm 2 LSB$ Differential Non-Linearity [LSB]

TDC Code (Fine Time)

TDC Code (Fine Time)

FTMI Workshop 3-5 June 2022

TDC resolution:

- Coincidences between TDC pairs used to cancel common jitter (e.g. clock jitter)
- TDC resolution is 13 ps
 - 5% dispersion

- The timing of a MIP is obtained from the average of the two measurements in a LYSO bar.
- The bar time resolution is derived from the CTR of the two channels in the crystal bar (σ_{bar} =CTR/2).

Time resolution as a function of the discriminator threshold for LYSO pulses with 9500 photoelectrons, typical of BoL conditions.

Time resolution of LYSO pulses characteristic of EoL for DCR of 30 GHz as a function of the delay line in the DCR cancellation circuit.

TOFHIR2 timing performance

100 FTMI Workshop 3-5 June 2022

time1-time2 lps

Example of

distribution

time

Preliminary measurements with PET modules

Hamamatsu 8x8 SIPM array coupled to LYSO 15mm 8x8 array

Delta

1468

824 8

95.45

22.56 / 12

260.5±8.5

826.9±2.4

88.48±1.72

OV: 8V

ասհասհասհա 3000 -2000 -1000

0 1000

hDelta

Entries

Mean

Std Dev

 γ^2/ndt

Sigma

- Caveats:
 - TOFHIR2 is not optimized for PET
 - Non-optimized PET module
- Comparison with TOFPET2:
 - No degradation of CTR with OV.
 - No satellite peaks in time distribution at large OV.

3

FWHM [ps]

CTR as a function of OV

- The TOFHIR2 readout chip for the CMS barrel MIP Timing Detector was developed
- Measurements with sensor modules associated to TOFHIR2 match the expectations
 - Timing resolution of 25 ps is measured at nominal BoL conditions
 - Timing resolution of 55 ps is measured at nominal EoL conditions and 30 GHz DCR achievable with T=-45oC
- DCR cancellation and baseline stabilization allows good timing at large OV

Thank you for your attention

Backup

TOFHIR2 timing performance

TID tests done at the x-ray irradiation facility at CERN

- Max expected dose in barrel MTD is 3 Mrad
- ASICs irradiated up to 7 Mrad

Results:

- We observed effects due to large leakage current in TSCM 130nm (fab 14) at dose ~1 Mrad:
 - 20% increase of current consumption
 - 15-20% decrease of DAC's voltage range
- Full recovery after 10h annealing
- Negligible effects up to 7 Mrad in the frontend amplifiers, TDC and QDC.

TOFHIR2A current consumption

TID radiation test

SEE radiation test

- Tests of Single Event Effects (SEE) performed at Heavy Ion Facility (HIF) Louvain-la-Neuve
- SEE protection in TOFHIR2:
 - TMR on configuration bits (15'558 flip-flops) and automatic correction of SEUs
 - Transients (SETs) in the clock and resync are protected in TOFHIR2B

Results:

- Measured cross-section of corrected SEU errors
 - match well the expectations
- Observed two uncorrected SEU errors
 - with large LET (37.4 MeV/mg/cm²) and fluence of 4.5 M ions/cm2
- Extrapolation to LHC:
 - <<1 uncorrected error/chip/year</p>

Cross-section of corrected SEU errors

TOFHIR2 timing performance