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 The HEP Software Foundation (HSF) and the HSF Generator WG [1,2]
—LHCC Review of HL-LHC Software and Computing

» Reengineering MG5aMC for vector CPUs and GPUs [3,4]
—Motivation: more efficient use of limited CPU resources, exploit new architectures
* Both are general themes also throughout HSF activities and in the HL-LHC Review!
—Matrix Element generators: ideal compute-intensive kernels for SIMT and SIMD
— Our implementation in MG5aMC: design, results, status and plans

* Conclusions

[1] Computing and Software in Big Science, May 2021, https://doi.org/10.1007/s41781-021-00055-1
[2] HL-LHC Review, Oct 2021, https://arxiv.org/abs/2109.14938

[3] VCHEP2021 presentation, May 2021, https://indico.cern.ch/event/948465/contributions/4323568
[4] vCHEP2021 proceedings, Aug 2021, https://doi.org/10.1051/epjconf/202125103045
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HSF The HEP Software Foundation (HSF)

« A community organization to facilitate coordination and common efforts in
High Energy Physics software and computing internationally since 2014

« HEP software is the result of 20+ years of development and must evolve
—To meet the challenges of new experimental programmes (HL-LHC and more!)
—To meet the technical challenges posed by an evolving computing landscape

« Objectives: share expertise; raise awareness of existing software solutions;
catalyse common projects; promote commonality and collaboration to make
the most of limited resources; support training and career development;
provide a structure for the community to attract effort and support and help
prioritising our work, while promoting collaboration with other sciences...

« 2017: WLCG charge for producing a Community White Paper
—This resulted in the publication of a Roadmap for HEP Computing
—Then: engagement in European Strategy Update, Snowmass, HL-LHC review...

« Today: biweekly coordination meetings, many Working Groups — get involved!
—Browse https://hepsoftwarefoundation.orq, register in our discussion forums
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Computing and software are gaining the visibility they need

Ewopeans’uategy 2020 Strategy Statements

4. Other essential scientific activities for particle physics

Computing and_software_infrastructure

» There is ajneed for strong community-wide coordination for computing and software R&D activities| and for the
development of common coordinating structures that will promote coherence in these activities, long-term planning
and effective means of exploiting synergies with other disciplines and industry

« A significant role for artificial intelligence is emerging in detector design, detector operation, online data processing

+ |Computing and software are profound R&D topics in their own right and are essential to sustain and enhance particle
physics research capabilities

* More experts need to be trained to address the essential needs, especially with the increased data volume and
complexity in the upcoming HL-LHC era, and will also help in experiments in adjacent fields.

d) Large-scale data-intensive software and computing infrastructures are an essential ingredient to particle physics research
programmes. The community faces major challenges in this area, notably with a view to the HL-LHC. As a result, the
software and computing models used in particle physics research must evolve to meet the future needs of the field.
The community must vit:yorously pursue common, coordinated R&D efforts in collaboration with other fields of scienceand
industry to develop software and computing infrastructures that exploit recent advances in information technology and data
science. Further development of internal policies on open data and data preservation should be encouraged, and

an adequate level of resources invested in their implementation.

H. Abramowicz, https://indico.cern.ch/event/924500/
19/06/2020 CERN Council Open Session 24
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HSF The HSF Physics Event Generator WG

« WG formed in 2018 after the Physics Event Generator Computing Workshop

« A common forum for discussion and technical work on MC generators in HEP
—Complementary approach: focus on computational issues, rather than on physics
— A diverse community of 80+ theorists, experimentalists, software engineers
—Meetings (16 so far, all minuted) on https://indico.cern.ch/category/8460/
— Contact hsf-generator-wg-convenors@googlegroups.com to get involved!

« Main activity in 2020-2021: LHCC review of HL-LHC software and computing
—First stage of the review last year — report (July 2020) available here

—Second stage of the review completed last week (Nov 2021)!
» Generators one of 7 areas — with ATLAS, CMS, simulation, DOMA, ROQOT, analysis

« Two recent publications of the WG in the context of the LHCC review

— CSBS paper, May 2021 — doi:10.1007/s41781-021-00055-1
* A detailed review of (technical and human) computational challenges in MC generators

—LHCC document, Oct 2021 — arxiv:2109.14938
« Summarizes inputs received by many generator teams during dedicated WG meetings
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Challenges in Monte Carlo Event Generator Software
for High-Luminosity LHC
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* Focus on software and computing aspects rather than on physics precision “per se”

» Technical challenges — mainly, the costs associated to large scale event productions

— Many (sometimes large) inefficiencies = many opportunities for (large) speedups!
» Inefficiency in phase space sampling algorithms (many events rejected during unweighting)
* Inefficient software implementation (CPU SIMD and GPUs not yet used) — the rest of this talk!
» Negative weights due to QCD NLO matching mean more unweighted events to generate
— Can we predict the cost (in CPU time) of increased physics precision (e.g. NLO to NNLO)?

— Need reproducible benchmarks and detailed profiling of (per-process, per-generator) costs

 Human and collaborative challenges — another essential part of the same problem
— Training on new software development paradigms — the HSF is very active in this area

— Promote collaboration of theorists, experimentalists, software engineers — the rest of this talk!
» Also promote easier plug-and-play exchange of software components via agreed APIs? Mentioned in WG meetings

— Career paths for S&C work with limited physics content — keep it in mind for future colliders!
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MG5aMC on GPU — project overview H SF

* A joint effort started in Q1 2020 in the context of the HSF Generator WG
—Nice collaboration of theoretical / experimental physicists and software engineers!
—Initial team: Oliver Mattelaer (Louvain), AV, Stefan Roiser (CERN)

» Main focus: port to Nvidia GPUs using CUDA, in parallel, optimisation of C++ backend

—Many contributors from different institutes joined (and left) over time:

* Alphabetically: Smita Darmora, Taylor Childers, Tyler Burch, Walter Hopkins (Argonne),
Taran Singhania (Bangalore), Vince Pascuzzi (Berkeley) Andreas Reepschlaeger,
David Smith, Laurence Field, Stephan Hageboek (CERN), Carl Vuosalo (Madison),
Josh McFayden (Sussex), Nathan Nichols (Vermont)

» Tests/Cl, performance plots/profiling, abstraction layers (Kokkos, Alpaka, Sycl)

—Project is maintained on https://github.com/madgraph5/madgraph4gpu

» Upstream MG5aMC is on https://launchpad.net/mg5amcnlo

» Regular meetings every two weeks (overall activity coordination: SR)

\N

b

* Why did we choose to focus on MG5aMC for a GPU port? Two reasons:
—Earlier efforts at KEK in 2010-2013, not released for production (see HOW?2019)
» We are not leveraging on this work (based on an old version of MG5aMC’s ME library)
—Main reason: active involvement of core MG5aMC developer (OM)
—NB1: many of the design ideas we describe are applicable to other generators...
—NB2: focusing on LO only for the moment (no MC@NLO merging yet...)
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Motivation #1 : speeding up code (including MC generators)

» Projected experiment needs at HL-LHC exceed projected available resources
—For both CPU and storage — need R&D to overcome this computing resource gap

« Speeding up MC event generators is an important R&D goal (e.g. for ATLAS)
—MC generators are essential for (HL-)LHC physics and large CPU time consumers
—Many inefficiencies, both in algorithms (sampling,...) and implementation (SIMD,...)

'E‘ 80|_| T |RuT3$H:?5)|l T .I L |Rl\m4(p|:88|714?) T T ‘Run’Sl(pTﬂGIﬁ—ZOID)_
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. 30F E Maybe not (relatively simpler

S 20F = processes than at LHC?), but

< 105_ E you'd better think of this upfront!
a | J | ‘ | | | | ] (And inefficiencies are always a waste!)

02020 2022 2024 2026 2028 2030 2032 2034
ATLAS HL-LHC Computing CDR (2020) Year

ATLAS: GEN is projected to be ~20% of total CPU budget
(Aggressive R&D: #events/second multiplied by x2, generate fewer events)
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Motivation #2 : GPUs, vector CPUs — underexploited in HEP

« GPUs provide most of the compute power in recent HPCs (e.g. Summit: 95%)
— Supercomputers at HPC centers: large opportunistic use by LHC experiments
—But only a small share of HEP software workloads can run on GPUs today

« Most WLCG CPUs support vectorization (SSE4.2, AVX2 or above)
—But only a small share of HEP software workloads exploit CPU vectorization today

= Can we exploit GPUs (and CPU vectorization) in MC event generators?
The work described in the rest of this talk addresses this question for MG5aMC

The computing hardware landscape
IS in continuous evolution!
Vector CPUs, GPUs, HPCs, FPGAs
(and more yet-unknown platforms!)
will most certainly be relevant
at future e*e- Higgs factories...

https://www.flickr.com/photos/olcf

You'd better plan upfront for a very
heterogeneous computing!
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What is a MC generator? A simplified computational anatomy

Monte Carlo sampling: randomly generate and process
MANY different events (‘phase space points”) ‘ G

This can be parallelized (SIMT/SIMD and multithreading)

For each event: MATRIX
PSEUDO\RANDOM ELEMENT
1. NUMBERS GENERATOR
Output: random numbers W (e.g. MG5aMC)
2. PR T SPacE SHOWERING AND
Input: random numbers SAMPLING . HADRONIZATION
Output: particle 4-momenta + optional event cuts GENERATORS
.O (e-g- PYTHIA)
3. =
Input: particle 4-momenta SFI’-II::;E):S
Output: Matrix Element (ME) PHASE SPACE W
CPU BOTTLENECK SAMPLING WEIGHTED EVENTS HADRONISATION
OPTIMISATION {EVT i, W_i} AND DECAY
‘ L1
: W W e
. MONTE CARLO MONTE CARLO FILTERING
INTEGRATION UNWEIGHTING
. = D W
\ w - DETECTOR
_ _ CROSS-SECTIONS etc... = UNWEIGHTED EVENTS ::3: SIMULATION
(NB: Matrix Element is an (AVG W_i, MAX W_i) {EVT i, W_i=1} :
element of the scattering matrix... e E (GEANTA4)

almost no linear algebra here!)
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Code is auto-generated = lIterative development process

» User chooses process, MG5aMC determines Feynman diagrams and generates code
— Fortran (default), C++, or Python — all generated by Python code-generating meta-code
— The more patrticles in the collision, the more Feynman diagrams and the more lines of code

>~< ><<< >< >_<<< Process LOC functions function calls
>—<<< >—< >—<<< >—< gg — tt 839 10 22 PRODUCE
L O O 1082 36 106 o (1)

agq — Ifg
T W e 99 — tigg 1985 222 786
—_— = - — \\&

(2)

N R

— (1) Start simple: bootstrap with e*e-—u*ur (two diagrams, few lines of C++ code)  £E:%
—(2,3) Add CUDA and improve C++, port upstream to meta-code in launchpa i
— (4) Generate more complex LHC processes like gg— ttgg !

ENGINEERED
CUDA/C++ CODE

— Add missing functionality, fix issues, improve performance, iterate

e M e H start new INTEGRATE
1. IXXXXX 1. IXXXXX 1. IXXXXX 1. IXXXXX “epoch” upsTREAM Y
(a) 3.7rv1 0 (b) 3. FFV2_4_0 '
2. FFV1P0_3 2. FFV2_4_3
1. OXXXXX 1. OXXXXX 1. OXXXXX 1. OXXXXX \ MADGRAPY
< i~ < 2 PRODUCE
sive G
« NEW (Oct 2021): Python code-gen plugin is also in github \ .
— Much faster iterations to port features (e.g. vectorization) to ~all processes AUTO-GENERATED

CUDA/C++ CODE
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A complex outer shell —with a CPU-intensive core: the ME

» To generate unweighted events in MG5aMC: execute a “gridpack”
— Python and bash scripts launching multiple instances of a Fortran application (madevent)
— A complex software infrastructure with many functionalities and a stable user interface
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* Overall, the ME calculation is the CPU bottleneck (Fortran routine matrix1)
— Fraction of time spent in ME increases with number of events and process complexity-

gg — tt gg — ttgg gg — ttggg
madevent 13G 470G 11T
matrixi 3.1G (23%) | 450G (96%) 11T)(>99%)

(Mattelaer, Ostrolenk — https://arxiv.org/abs/2102.00773)
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Standalone CUDA/C++ application VS. MadEvent integration

« Our main focus: the ME calculation in CUDA/C++ (sigmakin kernel/function)
— Design approach: single source code for CUDA and C++ (>90% common code + #ifdef's)

« Our workhorse: a simplified CUDA/C++ toy framework to feed events to the ME kernel

— All 3 main components on the GPU: random (cuRAND), sampling (RAMBO), ME (sigmakin)
— Fast, same results in GPU/CPU, but not good for production (RAMBO algorithm is inefficient)
— The results presented in this talk come from this framework

CURAND:
identical random
number sequences
on host (CPU)
and device (GPU),
allowing CUDA/C++
bitwise comparisons

FORTRAN:

LATER RANMAR
\ (WIP) 00000000
NOW o R — uuuu

FORTRAN:
MADEVENT

« Our plan (in progress): inject CUDA/C++ ME kernel into MadEvent/gridpack framework

— Fastest way to production — easier than rewriting MadEvent in CUDA/C++
— Validated code/infrastructure, same user interface — discussed with experiments at HSF WG
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WIP: interfacing with Fortran MadEvent — potential challenges

 Linking Fortran and C++ should be easy (just transpose multidimensional array indexes

» From a first look at MadEvent: two potential challenges (legacy code reengineering)
— (1) must create event baskets a posteriori (current code loops on individual events)
— (2) Fortran common blocks complicate separation of inputs and outputs? (not pure functions)

# Need a new software interface! ﬁ'
FORTRAN: This applies to any ME generator FORTRAN:
RANMAR to exploit vectorization or GPU... RANMAR
1 Opportunity for new agreed API? i
FORTRAN: FORTRAN:
MADEVENT | > MADEVENT
. OJENT . SINGLE event MANY events |t |
(momenta) (momenta) MOMENTA
FORTRAN: COMMON PURE
M.A-TRIXI BLOCKS FUNCTION
(hidden inputs (clear inputs
MATRIX ELEMENTS and outputs?) and outputs) MATRIX ELEMENTS
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Main design idea: event-level data parallelism (lockstep)

* In MC generators, all events in one channel initially go through the same calculations
— Computing MEs involves the calculation of the exact same function on different data points
— This is what makes event generators a good fit for GPUs (SIMT) and vector CPUs (SIMD)

|
PSEUDO RANDOM A
- Time NUMBERS
§ eo000000 I ‘12 |
2 W (]
E %ééé%é PHASE SPACE T
- no divergence SAMPLING
- éééééééé + optional event cuts
S (will need to repack data once)
= /R | Lo i
§ sync GPU Time I >° I
n
i | T e —|E
& S|MD I B1 ‘ B2 ‘ B3 ‘ B4 I B4
/ \ lockstep = no thread divergence |A:B1 ‘A;BQ‘A;BS‘A;MI |A4j'34|
GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)
Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register
Minimum parallelism: 32 threads in a warp (NVidia) Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)
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LA ROULETTE DE MONTE-CARLO

Aside — Monte Carlo’s: what about branching?

g

» Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

» From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING
(within one channel) | INPUT 0@

Physics generators:

- MC integration
(cross sections)

- MC generation
(event samples) 4

OUTPUT

Lockstep processing
Good for SIMT/SIMD

NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

INPUT

DECISION
0@

OUTPUT

Stochastic branching
Bad for SIMT/SIMD

MC DECISIONS

Physics generators:

- MC sampling channel

- MC unweighting
(accept/reject)

- Parton showers (PS)

- Fragmentation

- Particle decays (to what?)

MC detector simulation

- Particle/matter interaction
(when? how?)

- Particle decays (when?)
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Event-level parallelism in practice — coding and #events

Easier to code for GPU SIMT than for CPU SIMD: CUDA code was faster to prototype

CUDA (GPU) implementation
— For SIMT, event loop is “orthogonal”: one thread = one event (GPU thread ID < event ID)
— For SIMT, SOA memory layouts are beneficial (coalesced access), but not strictly essential

C++ (CPU) implementation
— For SIMD, event loop must be the innermost loop (e.g. invert helicity and event loops)
— For SIMD, SOA memory layouts in the computational kernel are essential

To be efficient, our CUDA needs O(10k-1M) events in parallel — much more than C++
— CUDA: lockstep in each warp (32 threads) + (current implementation) many warps to fill GPU
— C++ lockstep in each vector register (2-8 doubles) + multi-threading or multi-processing

et P ek P OO0 s —
-

256 ] ? 256 _ A O ¥ YO
128 128 SN

5 -
o ’ e 64 [ e 64 o 87
8 R ® .: aooooo | * 32 %
o — . = =
> |- | Double precision . i Double precision S
< = NVidia V100 . NVidia V100 v o
g = (2560 FP64 cores) . : (2560 FP64 cores) &
()8 £
8 E () “::)L'LLUJ f %
T2 » = c
— w ] S <
X|2 L |
X T | - @
= | e*e—u*u — 7E8 MEs/s 1 gg—tt — 5E5 MEs/s 5
Sl e for 500k MEs in parallel I for 16k MEs in parallel | <
R8s & 8 3 8 8 &8 F o8 o5 & 3|l2le s og » &8 & £ 5 X 2 $ sl|lsle £ & 3 0§ £ 5 3
S R - L_I § 5§ 3 S sorEE u L - B B
#EVENTS IN PARALLEL per iteration omireRdsrerEeaumelackrerend

#Threads Per Block * #Blocks
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CUDA/C++:. ME code example (complex number scalar/vector)

Formally the same code for three back-ends (cxtype_sv represents three types)

- CUDA: scalar complex — (typedef thrust::complex<fptype> cxtype; // two doubles: RI
- C++,no SIMD:  scalar complex — |typedef std::complex<fptype> cxtype; // two doubles: RI

- C++, with SIMD: vector complex — _| class cxtype v { fptype_v m_real, m_imag; // RRRRIIII (SOA)

device ‘ e « || FFVL_O:
void FFV1_@( const Fl[], // input: wavefunctionl[6] 1. IXXXXX 1. TXXXXX he|IC|t§/ amplitude
const cxtype sv F2[], // input: wavefunction2[é6] .
const cxtype sv V3[], // input: wavefunction3[6] (a) > FEVIPO. 3 3. FFV1_0 for the YRR vertex
const cxtype COUP, 1. ox.xxxx 1_ OXXXXX NEW (O.Ct 2021). now
cxtype_sv* vertex ) // output: amplitude o - automatlcally generated
{
mgDebug( ©, _ FUNCTION _ );
const cxtype cI( @., 1. );
const cxtype_sv TMP@ = (F1[2] * (F2[4] * (V3[2] + V3[5]) + F2[5] * (V3[3] + cI * (v3[4]))) + “+” is the usual sum of two
(FL[3] * (F2[4] * (V2[3] - cI * (v3[4])) + F2[5] * (v3[2] - V3[5])) + (thrust/std) scalar complex,
(F1[4] * (F2[2] * (v3[2] - v3[5]) - F2[3] * (V3[3] + cI * (v3[4]))) + or the user defined sum of
F[5] * (F2[2] * (-v3[3](+]cI * (v3[4])) + F2[3] * (v3[2] + V3[5]))))); two vector complex

(*vertex) = COUP * - cI * TMP®; inline

mgDebug( 1, _ FUNCTION _ ); cxtype_v operator+( const cxtype_v& a, const cxtype v& b )

{

return cxmake( a.real() + b.real(), a.imag() + b.imag() );

return;

J }

#ifdef __clang__
C++ S'MD gCC / Clang typedef fptype fptype_v __attribute__ ((ext_vector_type(neppV))); // RRRR

compiler vector extensions

#else
typedef fptype fptype_v _ attribute__ ((vector_size (neppV*sizeof(fptype)))); // RRRR
#endif
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CUDA: Profiling with NVidia NSight Compute — ncu

We regularly profile CUDA with ncu [both one-off studies and on-commit checks]
— Thanks to our mentors at the Sheffield GPU hackathon for getting us started!

We see no evidence of thread divergence [branch efficiency is 100%]

Our AOSOA layout ensures coalesced memory access [requests vs transactions]

We continuously monitor register pressure — decreasing it is one of our future goals
— We plan to split the ME computation into many kernels coordinated by CUDA Graphs

eemumuAY_cu_0513_1107_b2048_t256_i1_prof2divergent.ncurep X

Regs: 125 GPU: NVIDIA

NO_DIVERGENCE 519 x(256, 1, 1) Tim nd Cycles: 467,720 Regs: 120 GPU: MVIDIA

_op_ld.sum [request] 917,58 (o4 pipe_lsu_mem_global_op_ld.sum [sector]
r_thread [register/thread] 128 5855 branch_targets_threads_uniform.pct [thread]

Example: compare baseline implementation (100% branch efficiency) to a test with artificial divergence

C(E/RW A. Valassi — HSF generator WG & MG5aMC for GPUs and vector CPUs ECFA workshop — 9 Nov 2021

~Z_




CUDA: Host(CPU)-to/from-Device(GPU) data copy has a cost

* In our standalone application (all on GPU): momenta, weights, MEs D-to-H
— Plots below from Nvidia Nsight Systems: 12 iterations with 524k events in each iteration

» Eventually, MadEvent on CPU + MEs on GPU: momenta H-to-D; MEs D-to-H

* The time cost of data transfers is relatively high in simple processes

— ME calculation on GPU is fast (e.g. ete—u*u : 0.4ms ME calculation ~ 0.4ms ME copy)
* Note: our ME throughput numbers are ( number of MEs ) / ( time for ME calculation + ME copy )

NVTX [

( 00 CudaFree [325.083 ms] Job memar.. (GECERC I JELOI NI RIRIRIQIRIQINI ] 5= comestat ..
LA w1 ( ussfree autato..| | AL1L10R0 1N ([ cudaDevieReset. ]
ZOOM (ME calculation ~ ME copy)

f

NVTX 0d SGoodHel [1.477ms] |

4 3a Sigmakin [393.256 pg] 3b CpDTHmes [366.039 ps]
CUDA APL — cudaDevicasynchranz

efe—-utw

« But the time cost of data transfers is negligible in complex processes

— ME calculation on GPU is slow (e.g. gg—ttgg: 1000ms ME calculation >> 0.4ms ME copy)
— We expect that this will not be an issue for typical LHC collision processes

NVTX |oo ”IDd B eI == Sigmakin [1... |32 Sigmakin

MNVTX

gg—tigg

CUDA APT

CE
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Summary of (preliminary)
th rou g h p Ut resu ItS Being re-checked: probably this Fortran implementation

uses a different (2x faster) algorithm — helicity recycling?

_ _ Implementation MEs / second MEs / second
C++ vectorization double speedup x4.2 (99— ttgg) Double /| Float
— Achieves theoretical limit of x4 for 256-bit |  1-core MadEvent Fortran 3 96E3
— Further WIP on 512-bit with x8 theoretical scalar (x2.2)
1-core Standalone C++ 1.84E3 1.80E3
C++ vectorization float speedup x7.7 Scalar (x1.00) (x0.98)
— Achieves theoretical limit of x8 for 256-bit [  1-core Standalone C++ 3.36E3 6.60E3
. . 128-bit SSE4.2
— Twice as many floats as doubles in SIMD!| ;5 youbles, x4 floats) (x1.8) (x3.6)
1-core Standalone C++
S ARG 6.86E3 1.31E4
x4 doubles, x8 floats CET) Ly
CUDA V100: ~x300 over 1-core C++
: : 1-core Standalone C++
- T+here |s; room for further Improvements w256 bit? AVX512
— ete'—»utu was x2 better (fewer registers) x4 doubles, x8 floats

— Need to optimize QCD color algebra 1-core Standalone C++

512-bit AVX512

CUDA V100: float x2 faster than double e ——

.. . Standalone CUDA
— Similar to CPU SIMD, different reasons NVidia V100S-PCIE-32GB

— V100 Flops (&cores): FP32 = 2x FP64 TElops*: 7.1 EP64, 14.1 EP32)
* NB: much fewer FP64 on consumer cards!
b e.g. FP32 ~ 32x FP64 on T4 CardS * https://www.techpowerup.com/gpu-specs/tesla-t4.c3316

https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-32-gb.c3184

(CUDA11.1 and gccl0.2)
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Overview of work in progress and plans

Backport ME abstraction layers to code-generating meta-code
— Kokkos (T. Childers) is ~done; Alpaka (D. Smith) is progressing well; Sycl is also WIP
— Will allow a detailed performance comparison to native CUDA/C++
— Extend native CUDA to native HIP on AMD GPUs and compare to abstraction layers

Integration of CUDA/C++ ME with Fortran MadEvent
— Improve CUDA/C++ encapsulation, split Fortran single-event loops, review common blocks

Further performance optimizations of ME kernel
— CUDA: split sigmakin, reduce register pressure, CUDA graphs, investigate tensor cores
— C++: review AV X512 vectorization

Improve task parallelization and orchestration
— C++ multithreading, heterogeneous CPU/GPU workloads, optimize ‘whole node’ throughput
— Also: collaborate with HEPIX benchmarking WG on compute benchmark (prototype exists)

Not yet started: deal with even more complex (and relevant to LHC) physics
— pp collisions: many subprocesses and interface with PDFs
— NLO precision (including loop calculations), matching to parton showers
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Conclusions

HSF Generator WG: a pleasant collaboration of theorists, experimentalists, engineers
— Focus on computational challenges rather than on physics — you are all welcome to join!
— May be relevant for Michelangelo’s Future Collider Unit? (do not forget software/computing!)
— MG5aMC reengineering project was born in this context

We demonstrated the potential of GPUs and vector CPUs for any ME event generator
— ME calculation is the main CPU consumer and can largely be executed in lockstep
— CUDA on NVidia V100 is ~ x300 faster than one CPU core and shows no thread divergence
— We see almost a factor 4 speedup over scalar C++ from SIMD with 256-bit registers

We plan to interface this in MG5aMC for production use by the LHC experiments
— Keep the (mainly) Fortran outer shell and replace the ME calculation by our CUDA/C++
— A few other ingredients still missing for the LHC experiments (PDFs, NLO...)

Floating-point numerical precision is an important issue (do experiments need double?)
— Moving from double to float would gain a factor >2 both on GPUs and on SIMD CPUs

— Can we avoid NaN'’s in MEs with float? Is fast math ok?
* Note — sometimes (for a small fraction of phase space points) need quadruple precision for NLO loops

Work on abstraction layers is progressing well — comparison to Kokkos coming soon
— An attractive option (not the only one) to enlarge our work from NVidia to AMD or Intel GPUs
— Note: alternative approaches are also being worked on by the MadFlow team
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A complex and heterogeneous problem

aM
MadGrapho-2 5 iy

MC Physics Event Generator Software:
the application

Research in Theoretlcal Phy5|cs. T : 4
the foundation

« Software (and theory) diversity is good for physics
—It provides cross-checks and healthy competition

« But it complicates the definition of an R&D strategy
—Many software packages to optimize (and maintain!)
—Prioritization (“profiling”): is there a CPU “hotspot™?

A. Valassi — MC generators challenges and strategy towards HL-LHC LHCC - 01 Sep 2020

https://doi.org/10.5281/zeno0d0.4028834
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CPU throughput plots — SIMD + multi-core

» Two different throughput speedup factors multiply each other: SIMD and multi-core
— SIMD: fewer instructions per processor (e.g. in AVX2 each instruction applies to 4 doubles)
— Multi-core: many cores used in parallel (e.g. multiple jobs, multi-threading, multi-processing)

check.exe scalability on pmpe04 (2x 8-core 2.4GHz Haswell with 2x HT)
VARIOUS SIMD MODES

I VARIOUS SIMD MODES — 80
~—~ : : :
-g 100 NoHT | 2xHT ! Overcommit | NoHT @ 2xHT ! Overcommit
N 70 F 4
8 : : MAXIMUM MEMORY: 64 GB
(O] — ;
f 80| |
3 g
50}
" SIMD mode >
W 6ot ]|
*—e none [®)
= 40
~ e ssed >
= oo avx2 || (W
E a0f = |30
T (99}
O] D50} 1
) o SIMD mode
ol 2 e—e none
o 10} oo sses |]
E : ' : ' &—® avx2
L1 9% 10 20 30 20 s — % 10 20 30 a0 50

#CORES USED IN PARALLEL (#single-threaded job instances)

Prototype of OpenMP multi-threaded MG5aMC
Trivial coding (one pragmal!), but suboptimal/unstable
Much lower memory (~proportional to number of jobs)
Will probably reimplement this using std::thread

Multiple instances of single-threaded MG5aMC
Combine SIMD and multi-core speedup
Memory proportional to number of cores used

| THROUGHPUT (MEs per second) |

25

check.exe scalability on pmpe04 (2x 8-core 2.4GHz Haswell with 2x HT)

WITHOUT SIMD —

WITHOUT SIMD

80

No HT 2x HT ;Overcommit

0

10 20 30 40 50 —

70

—~
mleot
)
S—r1
>[50t
@
gm—
' #threads w
. per MT job | 2
L pedkensn|| [P
| e—e 2 n
e—e 4 o 20T
e—a 8
o 16 10
oo 32

NoHT @ 2xHT ! Overcommit
| MAXIMUMMEMORY: 64 GB

0

#threads
per MT job

ek 1(sT)|]
B iakalis

o 4
e—=e 8
e—=e 16
oo 32

|
-]

20 30 40 50

10

#CORES USED IN PARALLEL (#threads per job x #jobs)
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CPU throughpUt reSUItS (1) | Implementation MEs / second |
Double, Scalar — Fortran vs C++ (e*e ') Double

1-core MadEvent Fortran
scalar

1-core Standalone C++
scalar

C++ is only 15% slower than Fortran

Results on 1 core of a Skylake-AV X512 CPU (Intel Xeon Silver 4216)

VM running CentOS8, same compiler (gcc9) and compiler flags (-O3 -ffast-math)

Take this with a grain of salt: not an apple-to-apple comparison!
— Fortran: MadEvent framework instrumented with timers
— C++: standalone toy framework using Rambo
— Slightly different versions of upstream MG5aMC (slightly different algorithms)
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CPU th roug h pUt resu ltS (2) Implementation MEs / second
Double, C++ — Scalar vs SIMD EE, DOUIE
1-core MadEvent Fortran 1.50E6
scalar (x1.15)

» SIMD: excellent speedup from vectorization
) ) 1-core Standalone C++
— NB: only measuring the parallel calculation seelr
— Lower overall speedup (Amdahl’s law...)

1-core Standalone C++
128-bit SSE4.2
(x2 doubles)

» Best throughput: AVX512 limited to 256-bit width

— x3.7 over scalar C++ (vs x4 theoretical maximum)
 Estimate a x3.3 speedup over scalar Fortran

— Thanks to Sebastien Ponce for the suggestion!

1-core Standalone C++
256-bit AVX2
(x4 doubles)

1-core Standalone C++
“256-bit” AVX512
(x4 doubles)

» Disappointing: AVX512 with 512-bit width
— Slower than AVX2, why? Slower clock, what else?
— Can be improved? x8 theoretical maximum...

1-core Standalone C++
512-bit AVX512
(x8 doubles)

#Symbolsin.o | ssE42 | Avx2 | Avxs12 | Avxs12
Build type (xmm) (ymm) (ymm) (zmm)

Scalar 614 0 0 0

SSE4.2 3274 0 0 0

AVX2 0 2746 0 0 L» A few AVX512VL symbols yield a 7% improvement over pure AVX2
256-bit AVX512 0 2572 0

: — Degree of vectorization checked by disassembling (objdump)

512-bit AVX512 0 1127 205 2045 Custom categorization of symbols

CERN
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CP U th rou g h p Ut resu ItS (3) Implementation MEs / second MEs / second
C++, SIMD - Double vs Float (e7e ) Double Float
1-core MadEvent Fortran 1.50E6
scalar (x1.15) i

1-core Standalone C++ 1.31E6 1.21E6
scalar (x1.00) (x0.92) [x1.00}

1-core Standalone C++
128-bit SSE4.2
(x2 doubles, x4 floats)

2.52E6 4.50E6
(x1.9) (x3.4) [x3.7]

1-core Standalone C++
256-bit AVX2
(x4 doubles, x8 floats)

4.58E6 8.17E6
(x3.5) (x6.2) [x6.8]

1-core Standalone C++
“256-bit” AVX512
(x4 doubles, x8 floats)

4.91E6 8.84E6
(x3.7) (x6.7) [x7.3]

e Scalar: float slower than double

— To be understood (8% effect) el SIS LS G 3.74E6 7.42E6

512-bit AVX512
(x8 doubles, x16 floats) e ey [PEA)

» SIMD: float ~ x2 better than double!
— Execute Y2 as many vector instructions
— Best throughput: 256-bit AVX512 (x7.3 speedup against x8 theoretical maximum)

* |s single precision enough for physics? Can we improve numerical stability?
— Observed a few NaN every million MEs when using single precision
— Using fast math (~x2 speedup) also requires excellent control of numerical stability
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GPU throughput results (1)
Double — C++ vs CUDA (V100)

Implementation

MEs / second

 Full V100 GPU ~x600 faster than one CPU core

 Just a preliminary ballpark indication!
— CUDA: %2 of the time spent in data copy (e*te—u*u)

— CUDA: can optimize #threads*#blocks (here:524k)
— CUDA: should optimize scheduling and registers

— CPU: should use vectorization
— CPU: should use all cores (e.g. multi-threading)

(ete>putw) Double
1-core MadEvent Fortran 1.50E6
scalar (x1.15)
1-core Standalone C++ 1.31E6
scalar (x1.00)
1-core Standalone C++
128-bit SSE4.2 2()(5125)6
(x2 doubles, x4 floats) '
1-core Standalone C++
256-bit AVX2 425385;3
(x4 doubles, x8 floats) '
1-core Standalone C++
“256-bit” AVX512 4()?315;3
(x4 doubles, x8 floats) '
1-core Standalone C++
512-bit AVX512 e~
(x2.9)

(x8 doubles, x16 floats)
Standalone CUDA

NVidia V100S-PCIE-32GB

(2560 FP64 cores*)

* https://www.techpowerup.com/gpu-specs/tesla-t4.c3316
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GPU throughput results (2)

_ Implementation MEs / second MEs / second
CUDA _Dp uble vs Float (e o) =G et
(and NVIdIa VlOO VS T4) 1-core MadEvent Fortran 1.50E6
scalar (x1.15)
1-core Standalone C++ 1.31E6 1.21E6
* V100: float ~ x2.2 better than double! scalar (x1.00) (x0.92)
— Similar to CPU SIMD, different reasons 1-core Standalone C++ 2 52E6 4.50E6
— V100 Flops (&cores): FP32 = 2x FP64 128-bit SSE4.2 (x1.9) (x3.4)
— Fewer registers: float=48, double=120 (x2 doubles, x4 floats)
1-core Star)dalone C++ 4.58E6 8.17E6
o 256-bit AVX2 (x3.5) (x6.2)
* T4: very limited double performance (x4 doubles, x8 floats) ' '
— T4 Flops: FP32 = 32x FP64 1-core Standalone C++
. “ oo 4.91E6 8.84E6
— May be even worse in consumer cards 256-bit” AVX512 (x3.7) (x6.7)
(x4 doubles, x8 floats) ' '
1-core Standalone C++
512-bit AVX512 3'()(724 5)6 7(;1525)6
(x8 doubles, x16 floats) ' '
Standalone CUDA
NVidia V100S-PCIE-32GB 8(15_25(?)
TFlops*: 7.1 FP64, 14.1 FP32)
Standalone CUDA
Vidia T4 65258
TFlops*: 0.25 FP64, 8.1 FP32)

* https://www.techpowerup.com/gpu-specs/tesla-t4.c3316

https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-32-gb.c3184
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Throu g h P ut CPU with C++ SIMD vectorization:
AV X2 | 256-bit AVX512 (4 doubles/vector) are

summary table a factor 3.5 / 3.8 faster than scalar code

524k eemumu events per iteration CPU with C++ SIMD vectorization:
CPU single-thread scalar, double precision, “-O3 -ffast-math”: AVX2 | 256-bit AVX512 (8 floats/vector) are
C++ (reference value) is only 15% slower than Fortran a factor 6.2 / 6.8 faster than scalar double code
[WARNING: different contexts, Rambo vs MadEvent] (afactor 6.8/ 7.3 faster than scalar float code)
\
Description Compiler flags Register width Throughpu} MFEs/sec
Double | | Float
MadEvent Fortran - 1.50E6 —
(scalar) (x1 double, x1 (x1.15)
Standalone C++ “none” - — 1.31E6 1.21E6
(scalar) (x1 double, x1 float) |J(x1.00 (x0.92)
Standalone C++ “ssed” -march=nchalem 128 hits 2.52E6 4.50E6
SSEA.2) (x2 double, x4 float) | (x1.92 X3 |
Standalone C+- “avx2” -march=haswell 256 bits 4.68E6 8.17TE6
(AVX2) (x4 double, x8 float) | (x3.50) (x6.24)
Standalone C++ “512y" | -march=skylake-avx512 256 bits 4.91E6 8.84E6
256bit AVX512VL -mprefer-vector-width=256 | (x4 double, x8 float) | (x3.75) | | (x6.75) CPU with C++ SIMD vectorization:
Standalone C++ “5122” -march=skylake-avx512 512 bits 3.74E6 7.42E6 _hi _hi
(AVX512VL) _DMGONGPU PVW512 | (x8 double, x16 float) | (x2.85) | (x5.66) 512-bit AVX512 slower than 256-bit
Standalone CUDA - — 7.25E8 1.59E9 (CPU clock slowdown... what else?)
NVidia V100 (x550) | [ (x1210)
Standa.l_mrc rC%UDA — — 3.21E7 6.52E8 N GPU Wlth CUDA’ Slngle preCISIOn:
NVidia T4 (x25 (x500)

V100: float is 2.2x faster than double

Table 1: Throughputs (matrix elements per second) for eemumu. For Fortran: estimates from™NWJATRIX1 in (T4 float is 20x faster than dOUbIe!)
MadEvent. For C++ and CUDA: measurements from the epochl standalone executables, over 12\{erations
with 524k events (2048 blocks, 256 threads per block in CUDA), as of commit 51d7f52bf3 on Mwy 04. A Py -
Compilers: gee9.2 and CUDALLO. All builds use “-03” and “ffast-math” or “use_fast_math”. Virthg] GPU with CUDA! double precision.
machine itserd70 (Fortran, C++ and CUDA/V100 results): skylﬁ.ke-;wx.");Z Ccru ([)ntel Xeon Silver 4216)YV100 a factor 550 faster than 1 CPU core
with 4 virtual cores, NVidia V100 GPU. Virtual machine Ixplus770 (CUDA /T4 results): skylake-avx512 CPU P
(Intel Xeon Silver 4216) with 4 virtual cores, NVidia T4 GPU. Fortran and C++ throughputs use a single (T4 performs pOO”y — limited FP64)
CPU core. CUDA throughputs include device-to-host copies of all matrix element values.
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€ The MadGraph5_aMC@NLO (MGaMC) event generator

« Software framework for phenomenological studies of HEP collision processes
—Both within the Standard Model (SM) and beyond (BSM)
— Computation of cross sections and generation of hard events
— At tree level (LO) and at next-to-leading order (NLO)
—NLO matching to parton shower (PS) simulations
—Merging of matched samples with different numbers of jets
—Uses some external libraries (parton distribution functions, Feynman loops...)

» Essential tool for the LHC experiments, well established in ATLAS and CMS

_ BHEP :

* In our work, so far we used a subset of its features | ~
—Individual processes, no merging -t o order dilerentil ross secons, and
_ On Iy LO prOCeSSeS’ no matChIng their matching to parton shower simulations
~No PDFs (and limited use of QCD so far)

—We start simple...

CERN
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