

ASGC Site Report

Chien-De Li, Felix Lee, Eric Yen Academia Sinica Grid Computing Centre (ASGC) Taiwan HEPiX Autumn 2021

Mission

- Acting as a WLCG Tier-1 center and developing advanced distributed cloud infrastructure and technologies for O(1000)PB big data analysis globally through the collaboration with WLCG
 - Building capacity of large-scale distributed cloud for efficient big data analysis of Academia Sinica
- Developing DiCOS and enhancing science-enabling capabilities
 - DiCOS technologies and infrastructure are improved progressively with growing scientific applications of various disciplines
 - ML-enabled data analysis framework is also equipped
- System efficiency optimization: power, thermal, application, operation, system, etc.

ASGC Resources

- Total Capacity
 - 2MW, 400 tons AHUs
 - 112 racks in ~ 800 m²
- Resources (2021)
 - 17,250 CPU Cores
 - 950,272 GPU CUDA Cores/168 GPU Cards
 - 24 PB Disk Storage
 - 2x10Gb links to CERN and primary NRENs worldwide
- WLCG Tier-1 Center since 2005 84849 CPU-Days in 2016 1132296 CPU-Days in 2021(to Oct. 20)
- Supporting high-performance and high-throughput computing in Academia Sinica by distributed cloud operating system (DiCOS)
- R&D on system efficiency optimization by intelligent monitoring & control

5

ø

Nov

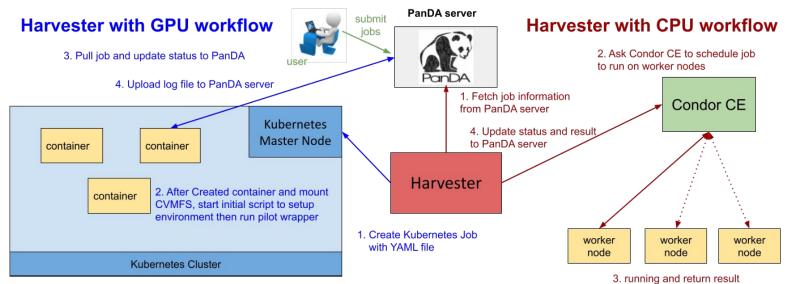
Dec

Monitoring the power consumption and temperature of every piece of equipment every 10 seconds.

Jan

May

All software used are open-source codes developed by ASGC and an international collaboration led by CERN


WLCG Tier-1/2 @ASGC

ATLAS in Taiwan

- Achievements: Higgs boson; Dark matter; Searches for beyond Standard Model
- Future plan: H—>bb; Di-Higgs; Dark matter
- Computing Resource
 - Tier-1: 3,268 CPUCores
 - Federated Taiwan Tier2: 672 CPUCores
- Storage Resource: 10PB managed by DPM
- Activities for ATLAS
 - Finished 891 billion events, 282 PB in 2020 (#processed data and MC events)
 - Support Folding@Home for COVID-19 studies
- Contributions to ATLAS Software and Computing
 - Participating development of ATLAS Harvester/Panda and RUCIO
 - Deeply involved with ATLAS data preparation activities

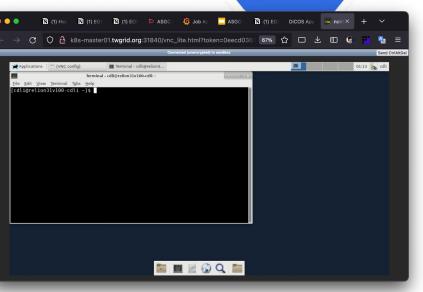
Building Distributed Cloud Infrastructure Supporting broader Scientific Applications based on WLCG

- Integrate the whole data analysis pipeline, develop web portal/science gateway, and optimize system efficiency
- Facilitate GPU computing for big data analytics through DiCOS: >100K GPUCard-Day used in 2020
- Computing model, system architecture and services, solution and technology are continuously improved by user experiences and advanced ICT
- Flexible virtual cluster over distributed heterogeneous resources
 - GPU, CPU with/without infiniband
 - Shared filesystem/storage by Ceph
 - Job scheduler through Slurm, HTCondor and Kubernetes (with containers)
 - Containerization of DiCOS core components: analysis pipeline robustness; portability; maintainability;
- Disciplines: AMS, TEXONO, Gravitational Wave(KAGRA, LIGO, IGWN), NGS, CryoEM, BioSAXS, Drug Discovery, Earth Science, Environmental Changes, Biodiversity and Ecological Monitoring, Lattice Gauge Theory, Condense Matter, proton therapy, RoseTTAFold and ML/DL applications.

Building Distributed Cloud Infrastructure Supporting broader Scientific Applications based on WLCG

- GPU update
 - · 2 servers
 - HPE XL675d Gen10 Plus
 - CPU : AMD EPYC 7302 (Rome) 16-Core Processor *2
 - 1TB memory and 1.2TB Nvme SSD
 - GPU:A100-SXM-80GB *8
 - Network: 100Gb/s (EDR)*4, will enable NVLink in future

- · 6 servers
 - Supermicro AS-4124GS-TNR
 - CPU: AMD EPYC 7302 (Rome) 16-Core Processor *2
 - 1TB memory and 1TB Nvme SSD
 - GPU: GeForce RTX 3090 *8
 - Network: 100Gb/s (EDR)


Cloud services

Openstack

Jupyter

- For Generic services and on-demand worker nodes
- Two kubernetes cluster
 - \circ For users
 - Offering batch, interactive GUI jobs
 - Such as remote Jupyterlab and virtual desktop
 - GPU cloud
 - For core services
 - Harvester
 - Rucio
 - Elasticsearch + kibana

Jupyter	Jupyter Lab Version: CPU with Tensorflow v1 Resources: 2%	Jupyter	Jupyter Lab gpu 3090 Version: GPU with Tensorflow 3090 Resources: 18%	Jupyter	Jupyter Lab GPU 1080ti Version: GPU with Tensorflow v2 Resources: 2%
	Launch •		Launch •		Launch -
Jupyter	Jupyter Lab GPU V100 Version: GPU with Tensorflow V100 Resources: 5%	Jupyter	Jupyter Lab GPU A100 Version: GPU with Tensorflow A100 Resources: 0%		
	Launch -		Launch *		
LION					
RELION	RELION 3 Version: V3.0.8 Resources: 0%	RELION	RELION 3.1 Version: V3.1 Resources: 0%	RELION	RELION 4 beta Version: V4 Resources: 0%
	Launch -		Launch -		Launch -

Storage services for local user and core services

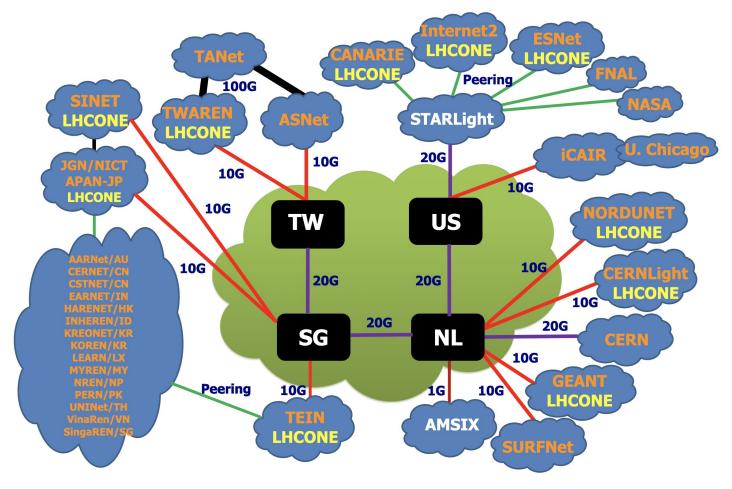
- Two_ceph instance
 - For OpenStack
 - Mainly provides RBD
 - ∎ 1.4PB
 - For user
 - Luminous => Nautilus
 - Mainly provides Cephfs for our local users
 - 5.5 PB
 - mds replay issue
 - expand mds from 3 to 14(7 online, 7 hot-standby)

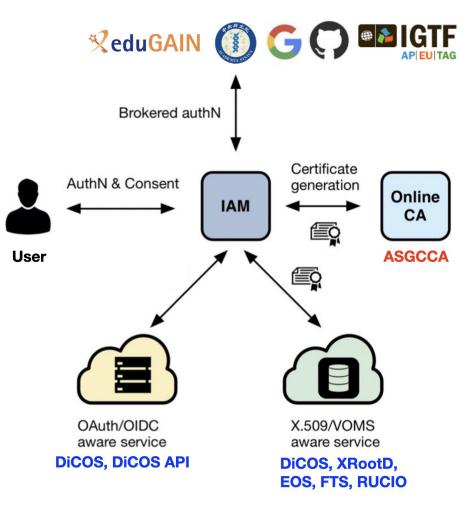
Storage services for WLCG

DPM

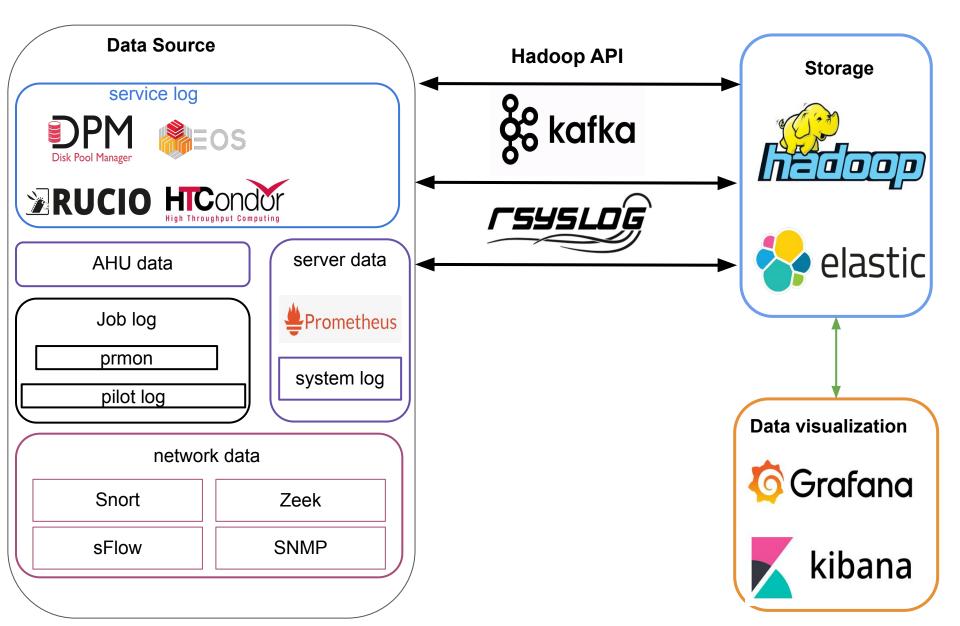
- Mainly provides for ATLAS
- 8.7 PB capacity
- DOME 1.14.2
- plan to migrate in early 2022

· EOS


- 3 x (MGM+QuarkDB) setup
 - 256GB RAM
 - 1TB system disk
 - 2 TB SSD (for /var/eos QuarkDB)
- Will deploy testbed at the end of 2021

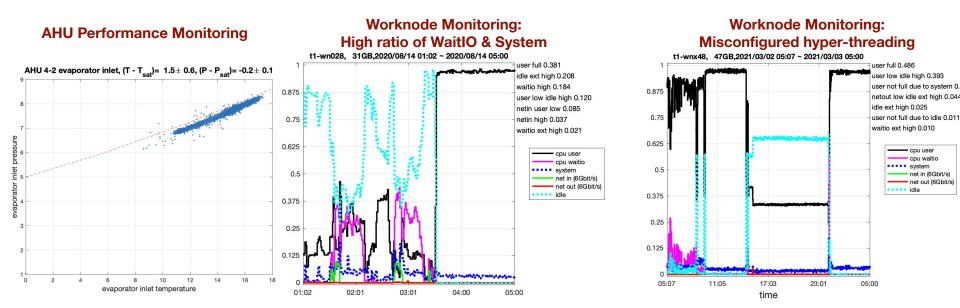

ASGCNet is responsible for providing high-throughput research network from Taiwan to Europe and Asia
Achieved 19.5Gb/s and 19.6Gb/s In/Out performance respectively at the same time over 2x10Gb/s international backbone between TW-SG-NL-CERN

Automatic backup with JGN and TEIN for LHCONE/LHCOPN traffic



Token-based AAI

- Basic Services according to community needs
 - User Identity, Community Attribute Services, Access Protocol Translation, Authorisation, and End Services
- User's home institute credential based authentication
 - Academia Sinica SSO, SAML, OpenID Connect (Google, Microsoft, Github) and X.509 certificates
- Supporting community AAI
 - Either local community or international community
 - Trust building between users and service providers
- Supporting federation of infrastructure services: identity management, access, resource, etc.
- Improving AAI services based on user experiences over IAM



Big Data infrastructure

System Efficiency Optimization

- Scope: Power, Thermal and Distributed Cloud System management
- Strategy: intelligent monitory and control through ML
- Example: Thermal management, Compute/storage/network anomaly detection, Power saving of worknodes
- AHU monitoring and control
 - Detection of refrigerant operating issues and abnormal components; Efficiency optimization
 - 13 sensors; 18K data points/day;
 - Realtime monitoring, adjustment and diagnostics
- System Anomaly Detection
 - Classify machine status into 5 clusters daily: based on CPU-user, CPU-wio, CPU-system, CPU-idle, Network
 In/Out
 - Compute/Storage/Network/Security anomaly detection based on system log and metrics in future

.Thanks a lot!

Academia Sinica Grid Computing