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Introduction: The Challenge
Application: Searches at LHC

Finding Signal in a dataset dominated by Background

Look in mJJ resonance spectrum

2 Scenarios:

Goal: 

+ Compare classic to quantum algorithm performance
+ Study impact of latent dimension and training size

Rationale for Quantum:

Improved accuracy (because data intrinsically quantum, quantum can 
find patterns that classic can’t) 2

Supervised Unsupervised

Truth known unknown

Training Data MC with signal model Data

Search model-dependent model-agnostic



Introduction: Workflow
- Data: Reduce dimensionality of input to make treatable by noisy quantum 

computers through Autoencoder
- Algorithms:

1. SVM Classification for supervised scenario
2. K-Means / K-Medians for unsupervised scenario

- Evaluation: Signal- vs Background-Accuracy
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Data & Quantum Embedding

Autoencoder Training:
Define data sideband 
(dominated by BG) 
as |Δη| > 1.4

Input: 
Dijet Events
Particle list (Δη, Δφ, pt)

Encoding inputs into quantum state
- Amplitude encoding (Q-means and 

Q-medians)
- Dense angle encoding (QSVM)

Training and Testing

- AE train: QCD sideband (2M events)
- Clustering train: QCD signalregion
- Clustering test: QCD signalregion 

(10K events)
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Autoencoding for Dimensionality Reduction

Originally designed to compress 
and decompress inputs, passing 
through bottleneck (latent space)

Idea 

Make AE learn how to compress BG, it will fail when seeing SIG event 
(reconstruction error)

Architecture: Convolutional + Dense Layers

Latent Activation: tanh, dimensionality variation   

Loss Metric: Chamfer-Loss / Pairwise distance
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Unsupervised Clustering: Q-MEANS

Algorithm in 3 parts:

1) Quantum distance calculation: distance to cluster
2) Quantum minimization (Grover / Duerr & Hoyer): closest cluster 

assignment
3) New cluster center calculation (classic)
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Unsupervised Clustering: Q-MEANS
1) Quantum distance calculation: distance to cluster

Prepare 2 quantum states

Measure ancilla in zero state

Do Swap Test
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Unsupervised Clustering: Q-MEANS
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Unsupervised Clustering: Q-MEDIANS

Algorithm in 3 parts:

1) Quantum distance calculation: distance to cluster
2) Classic minimization to closest cluster
3) Cluster median calculation (quantum distance + classic heuristics)
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Unsupervised Clustering: Q-MEDIANS
1) Quantum distance calculation: distance to cluster
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 [*] K-Means Clustering on Noisy Intermediate 
Scale Quantum Computers

https://arxiv.org/pdf/1909.12183.pdf
https://arxiv.org/pdf/1909.12183.pdf


Supervised: QSVM Classifier

- Supervised training on 600 qcd (background) and 600 GRS (signal) samples.
- Train to find the optimal separating hyperplane       convex optimisation 

task.
- Feature maps enable SVM to construct non-linear decision boundaries.

The kernel is defined via the feature map:
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Source: [https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f]



Supervised: QSVM Classifier
Quantum Kernel

Feature map circuit U(x), for 
latent dim = 16, and n = 8 
qubits. 
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- Quantum kernel is sampled from a quantum 
device.

- The optimisation of the objective function 
remains on a classical computer.



Discrimination Metric Distributions
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Metric
- QK-means & 

QK-medians: Sum 
squared distance to 
cluster centers 

- QSVM: Distance from 
decision boundary

Results
- Good separation of 

background vs signal
- Set cut-threshold β for 

signal efficiency
- Cut on tail for 

QK-clustering (e.g. β > 2)
- Cut on left mode for 

QSVM (e.g. β < -1)

Unsupervised (Q)K-means Supervised (Q)SVMUnsupervised (Q)K-medians



ROC: Classic vs quantum for latent dim R8 
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- Big variation in  performance  with  high  AUC  values  ~0.9  for narrow G_RS at 3.5TeV and 
~random for broad G_RS at 1.5TeV  both  QK-means/-medians  and  QSVM  algorithms 
(consistent with results in purely classic projects)

- Globally, supervised model outperforms unsupervised model but QK-means/-medians viable  
approach for solving model-agnostic problems

- performance of quantum algorithms is competitive when compared to classical counterparts

Unsupervised (Q)K-means Supervised (Q)SVMUnsupervised (Q)K-medians

Graviton 1.5TeV (broad), Graviton 3.5TeV (narrow), A to HZ to ZZZ 



ROC: Impact of latent dimensionality
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- Sweet spot of latent space dimensionality for QK-medians around ℝ16

- No dramatic drop in performance for very small dimension ℝ⁴

Quantum vs classic algorithm accuracy comparison 
for latent dim ℝ⁴, ℝ8, ℝ16 and  ℝ³²

Unsupervised (Q)K-means Unsupervised (Q)K-medians



ROC: Impact of training size
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- Training size has minor impact on accuracy
- Quantum and classical are competitive
- Quantum algorithm has slight advantage in QK-medians approach for very small training size 

of 10 samples but needs to be investigated further

Quantum vs classic algorithm accuracy comparison for training 
size of 10, 600 and 6000 training samples (Graviton 3.5 TeV)

Unsupervised (Q)K-means Unsupervised (Q)K-medians



Conclusion
- We studied a quantum anomaly detector and a quantum classifier operating in a latent 

space representation of HEP events
- Both, QK-means/-medians and QSVM, proved effective in discriminating background 

from signal data-sets
- Supervised QSVM method (e.g. model-dependent searches) shows superior results 

compared to the unsupervised QK-clustering approach (e.g. model-independent 
searches)

- Performance of quantum algorithms is competitive when compared to their classical 
counterparts

- Marginal impact of training size on accuracy, further investigate very small sample sizes
- Divergent impact of latent space dimensionality, sweet spot dependent on algorithm 

choice

17

Based on results, we conclude that quantum algorithms are applicable to both, 
a model-independent and model-dependent analysis and could contribute to 
extend the sensitivity of the LHC experiments.
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Autoencoding for Dimensionality Reduction

Architecture: Convolutional + Dense Layers
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Study impact of latent space dimensionality: 



Results: Latent Space Representation

➔ Encoder Output
➔

➔ Separation of 
Background and 
Signal
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Noise in distance calculation
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