Likelihood-Free Frequentist Inference for Calorimetric Muon Energy Measurement

Luca Masserano<sup>1</sup>

Joint work with: Tommaso Dorigo<sup>2</sup>, Rafael Izbicki<sup>3</sup>, Mikael Kuusela<sup>1</sup>, Ann B. Lee<sup>1</sup>

Department of Statistics and Data Science, Carnegie Mellon University
Italian Institute for Nuclear Physics and CERN
Department of Statistics, Federal University of Sao Carlos

Carnegie Mellon University

## Science relies heavily on high-fidelity simulators



Image adapted from Cranmer K., Brehmer J., Louppe G., PNAS (2020)

## Science relies heavily on high-fidelity simulators



Image adapted from Cranmer K., Brehmer J., Louppe G., PNAS (2020)

#### We are interested in stochastic simulators



### We are interested in stochastic simulators



Simulators that encode a likelihood and generate observable data













**Recent advances in LFI1.** Use ML algorithms and simulated data to directly estimate key inferential quantities:

use  $\{(\theta_1, X_1), \dots, (\theta_B, X_B)\}$ , where  $\theta \sim \pi_{\theta}, X \sim F_{\theta} \rightarrow \underbrace{\theta}_{\mathcal{H}}, \underbrace{f(\theta \mid x)}_{\mathcal{H}}, \underbrace{\mathscr{L}(\theta; x)}_{\mathcal{H}}, \underbrace{\mathscr{L}(\theta_1; x)}_{\mathcal{L}}, \underbrace{\mathscr{L}(\theta_2; x)}_{\mathcal{H}}, \underbrace{\mathscr{L$ 

Parameters Posteriors Likelihoods Likelihood ratios

**Recent advances in LFI<sup>1</sup>.** Use ML algorithms and simulated data to directly estimate key inferential quantities: 

use { $(\theta_1, X_1), \dots, (\theta_B, X_B)$ }, where  $\theta \sim \pi_{\theta}, X \sim F_{\theta} \rightarrow \underbrace{\theta}_{Parameters}, \underbrace{f(\theta \mid x)}_{Posteriors}, \underbrace{\mathcal{L}(\theta; x)}_{Likelihoods}, \underbrace{\mathcal{L}(\theta_1; x)}_{Likelihood ratios}$ 

**Recent advances in LFI1.** Use ML algorithms and simulated data to directly estimate key inferential quantities:

use {
$$(\theta_1, X_1), \dots, (\theta_B, X_B)$$
}, where  $\theta \sim \pi_{\theta}, X \sim F_{\theta}$   $\rightarrow \underbrace{\theta}_{Parameters}, \underbrace{f(\theta \mid x)}_{Posteriors}, \underbrace{\mathcal{L}(\theta; x)}_{Likelihoods}, \underbrace{\mathcal{L}(\theta_1; x)}_{Likelihood ratios}$ 

#### Do these methods give reliable measures of uncertainty around parameters of interest?

+ Hermans et al. (2021) showed all algorithms produce overconfident approximations:  $\mathbb{E}\left[\mathbb{I}[\theta \in \Theta_{\hat{p}(\theta|x)}(1-\alpha)]\right] < 1-\alpha$ 

--> Hinders the reliability of scientific conclusions

**Recent advances in LFI1.** Use ML algorithms and simulated data to directly estimate key inferential quantities:

use {
$$(\theta_1, X_1), \dots, (\theta_B, X_B)$$
}, where  $\theta \sim \pi_{\theta}, X \sim F_{\theta}$   $\rightarrow \underbrace{\theta}_{Parameters}, \underbrace{f(\theta \mid x)}_{Posteriors}, \underbrace{\mathcal{L}(\theta_1; x)}_{Likelihoods}, \underbrace{\mathcal{L}(\theta_1; x)}_{Likelihood ratios}$ 

Do these methods give reliable measures of uncertainty around parameters of interest?

Hermans et al. (2021) showed all algorithms produce overconfident approximations:  $\mathbb{E}\left[\mathbb{I}[\theta \in \Theta_{\hat{p}(\theta|x)}(1-\alpha)]\right] < 1-\alpha$ 

Hinders the reliability of scientific conclusions

#### **Goals**:

1. Recalibrate predictions and/or posteriors  $\rightarrow$  confidence sets with frequentist guarantees for finite *n* across  $\Theta$ 

 $\mathbb{P}(\theta \in \mathcal{R}(X_o) \,|\, \theta) = 1 - \alpha \quad \forall \theta \in \Theta, \quad X_o = (X_1, ..., X_n)$ 

2. Check actual coverage across the whole  $\Theta$ , without costly Monte-Carlo simulations

#### Ingredients:

- 1. Data  $X \sim F_{\theta}$
- 2. Test statistic  $\tau(X; \theta)$
- 3. Critical values  $C_{\theta,\alpha}$

Theorem (Neyman 1937) Constructing a  $1 - \alpha$  confidence set for  $\theta$  is equivalent to testing  $H_0: \theta = \theta_0$  vs.  $H_A: \theta \neq \theta_0$ for every  $\theta_0 \in \Theta$ .



#### Ingredients:

- 1. Data  $X \sim F_{\theta}$
- 2. Test statistic  $\tau(X; \theta)$
- 3. Critical values  $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a  $1-\alpha$  confidence set for  $\theta$  is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs.  $H_A: \theta \neq \theta_0$ 

for every  $\theta_0 \in \Theta$ .

i. Rejection region for  $\tau(X; \theta_0), \ \forall \theta_0 \in \Theta$ 



#### Ingredients:

- 1. Data  $X \sim F_{\theta}$
- 2. Test statistic  $\tau(X; \theta)$
- 3. Critical values  $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a  $1-\alpha$  confidence set for  $\theta$  is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs.  $H_A: \theta \neq \theta_0$ 

for every  $\theta_0 \in \Theta$ .

i. Rejection region for  $\tau(X; \theta_0), \ \forall \theta_0 \in \Theta$ 

ii. 
$$\tau(X_o; \theta_0), \ \theta_0 \in \Theta$$



#### Ingredients:

- 1. Data  $X \sim F_{\theta}$
- 2. Test statistic  $\tau(X; \theta)$
- 3. Critical values  $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a  $1-\alpha$  confidence set for  $\theta$  is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs.  $H_A: \theta \neq \theta_0$ 

for every  $\theta_0 \in \Theta$ .

i. Rejection region for  $\tau(X; \theta_0), \forall \theta_0 \in \Theta$ ii.  $\tau(X_o; \theta_0), \theta_0 \in \Theta$ iii.  $(1 - \alpha)$  confidence set



#### Ingredients:

- 1. Data  $X \sim F_{\theta}$
- 2. Test statistic  $\tau(X; \theta)$
- 3. Critical values  $C_{\theta,\alpha}$

Theorem (Neyman 1937) Constructing a  $1 - \alpha$  confidence set for  $\theta$  is equivalent to testing  $H_0: \theta = \theta_0$  vs.  $H_A: \theta \neq \theta_0$ 

for every  $\theta_0 \in \Theta$ .

i. Rejection region for  $\tau(X; \theta_0), \forall \theta_0 \in \Theta$ ii.  $\tau(X_o; \theta_0), \theta_0 \in \Theta$ iii.  $(1 - \alpha)$  confidence set

0.0 2.5 5.0 7.5 0 10.0 12.5 15.0 17.5 20.0  $\tau(X_o; \theta)$ 

**Wald** test statistic (1D case):

$$\tau^{Wald}(X;\theta_0) := \frac{(\widehat{\theta}^{MLE} - \theta_0)^2}{\mathbb{V}[\widehat{\theta}^{MLE}]}$$

#### Ingredients:

- 1. Data  $X \sim F_{\theta}$
- 2. Test statistic  $\tau(X; \theta)$
- 3. Critical values  $C_{\theta,\alpha}$

Theorem (Neyman 1937) Constructing a  $1 - \alpha$  confidence set for  $\theta$  is equivalent to testing  $H_0: \theta = \theta_0 \quad \text{vs.} \quad H_A: \theta \neq \theta_0$ for every  $\theta_0 \in \Theta$ . i. Rejection region for  $\tau(X; \theta_0), \forall \theta_0 \in \Theta$ ii.  $\tau(X_o; \theta_0), \theta_0 \in \Theta$ iii.  $(1 - \alpha)$  confidence set



**Wald** test statistic (1D case):

$$\tau^{Wald}(X;\theta_0) := \frac{(\widehat{\theta}^{MLE} - \theta_0)^2}{\mathbb{V}[\widehat{\theta}^{MLE}]}$$

#### Waldo test statistic:

 $\tau^{Waldo}(X;\theta_0) := (\mathbb{E}[\theta \,|\, X\,] - \theta_0)^T \mathbb{V}[\theta \,|\, X\,]^{-1} (\mathbb{E}[\theta \,|\, X\,] - \theta_0)$ 





#### **Statistical Properties**

**Synthetic example:** estimate mean of components of a Gaussian mixture (as in Lueckmann et al. 2021)

$$X \mid \theta \sim \frac{1}{2} \mathcal{N}(\theta, \mathbf{I}) + \frac{1}{2} \mathcal{N}(\theta, 0.01\mathbf{I}), \quad \theta \in \mathbb{R}^2$$

#### **Statistical Properties**

**Synthetic example:** estimate mean of components of a Gaussian mixture (as in Lueckmann et al. 2021)



Coverage: Waldo recalibrates posterior credible regions to account for estimation error and/or bias, regardless of prior and sample size

#### **Statistical Properties**

**Synthetic example:** estimate mean of components of a Gaussian mixture (as in Lueckmann et al. 2021)



- Coverage: Waldo recalibrates posterior credible regions to account for estimation error and/or bias, regardless of prior and sample size
- Power (expected size): if the prior is correctly specified, Waldo still benefits from the additional information

#### **Statistical Properties (coverage diagnostics)**

**Synthetic example:** estimate mean of a Gaussian mixture (as in Lueckmann et al. 2021)

$$X \mid \theta \sim \frac{1}{2} \mathcal{N}(\theta, \mathbf{I}) + \frac{1}{2} \mathcal{N}(\theta, 0.01\mathbf{I}), \quad \theta \in \mathbb{R}^2$$



#### Inference for calorimetric muon energy measurements

Muons are one of the elementary particles described by the Standard Model.

Their importance is mainly due to two facts: **first**, they emerge as a signature in processes which could signal the existence of new physics, and **second**, they are (relatively) easy to identify.

### Inference for calorimetric muon energy measurements

Muons are one of the elementary particles described by the Standard Model.

Their importance is mainly due to two facts: **first**, they emerge as a signature in processes which could signal the existence of new physics, and **second**, they are (relatively) easy to identify.





Muon entering the calorimeter in z direction. The colour gradient indicates the logarithmic energy deposits of a muon with incoming energy  $\approx 655.7~{\rm GeV}$ . Black corresponds to zero, orange to intermediate, and white to maximum energy.

Data obtained from Geant4<sup>1</sup> with incoming energy between 50 GeV and 8000 GeV



Muon entering the calorimeter in z direction. The colour gradient indicates the logarithmic energy deposits of a muon with incoming energy  $\approx 655.7~{\rm GeV}$ . Black corresponds to zero, orange to intermediate, and white to maximum energy.

- Data obtained from Geant4<sup>1</sup> with incoming energy between 50 GeV and 8000 GeV
- □ finely segmented calorimeter with 50 layers in z, each divided in a  $32 \times 32$  grid → 51,200 cells



Muon entering the calorimeter in z direction. The colour gradient indicates the logarithmic energy deposits of a muon with incoming energy  $\approx 655.7~{\rm GeV}$ . Black corresponds to zero, orange to intermediate, and white to maximum energy.

- Data obtained from Geant4<sup>1</sup> with incoming energy between 50 GeV and 8000 GeV
- □ finely segmented calorimeter with 50 layers in *z*, each divided in a  $32 \times 32$  grid → 51,200 cells
- □ 28 features<sup>2</sup> extracted from the spatial and energy information of the calorimeters cells. Three main groups:



Muon entering the calorimeter in z direction. The colour gradient indicates the logarithmic energy deposits of a muon with incoming energy  $\approx 655.7~{\rm GeV}$ . Black corresponds to zero, orange to intermediate, and white to maximum energy.

- Data obtained from Geant4<sup>1</sup> with incoming energy between 50 GeV and 8000 GeV
- □ finely segmented calorimeter with 50 layers in *z*, each divided in a  $32 \times 32$  grid → 51,200 cells
- □ 28 features<sup>2</sup> extracted from the spatial and energy information of the calorimeters cells. Three main groups:
  - 1. general properties of the energy deposition (e.g. sum of energy above/below a threshold)



Muon entering the calorimeter in z direction. The colour gradient indicates the logarithmic energy deposits of a muon with incoming energy  $\approx 655.7~{\rm GeV}$ . Black corresponds to zero, orange to intermediate, and white to maximum energy.

- Data obtained from Geant4<sup>1</sup> with incoming energy between 50 GeV and 8000 GeV
- □ finely segmented calorimeter with 50 layers in *z*, each divided in a  $32 \times 32$  grid → 51,200 cells
- □ 28 features<sup>2</sup> extracted from the spatial and energy information of the calorimeters cells. Three main groups:
  - 1. general properties of the energy deposition (e.g. sum of energy above/below a threshold)
  - 2. more fine-grained information (e.g. moments of the energy distributions in different regions over z)



Muon entering the calorimeter in z direction. The colour gradient indicates the logarithmic energy deposits of a muon with incoming energy  $\approx 655.7~{\rm GeV}$ . Black corresponds to zero, orange to intermediate, and white to maximum energy.

- Data obtained from Geant4<sup>1</sup> with incoming energy between 50 GeV and 8000 GeV
- □ finely segmented calorimeter with 50 layers in *z*, each divided in a  $32 \times 32$  grid → 51,200 cells
- □ 28 features<sup>2</sup> extracted from the spatial and energy information of the calorimeters cells. Three main groups:
  - 1. general properties of the energy deposition (e.g. sum of energy above/below a threshold)
  - 2. more fine-grained information (e.g. moments of the energy distributions in different regions over z)
  - 3. custom procedure that isolates clusters of deposited energy along the track



Muon entering the calorimeter in z direction. The colour gradient indicates the logarithmic energy deposits of a muon with incoming energy  $\approx 655.7~{\rm GeV}$ . Black corresponds to zero, orange to intermediate, and white to maximum energy.

- Data obtained from Geant4<sup>1</sup> with incoming energy between 50 GeV and 8000 GeV
- □ finely segmented calorimeter with 50 layers in *z*, each divided in a  $32 \times 32$  grid → 51,200 cells
- □ 28 features<sup>2</sup> extracted from the spatial and energy information of the calorimeters cells. Three main groups:
  - 1. general properties of the energy deposition (e.g. sum of energy above/below a threshold)
  - 2. more fine-grained information (e.g. moments of the energy distributions in different regions over z)
  - 3. custom procedure that isolates clusters of deposited energy along the track
- sum energy deposits over 0.1 GeV to get onedimensional energy-sum data

### Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

### Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

- 1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming muon had *and* construct a **confidence set for it with proper coverage**?
  - **goal**: reconstruct physical process that produced a muon and discover new physics

## Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming muon had *and* construct a **confidence set for it with proper coverage**?

**goal**: reconstruct physical process that produced a muon and discover new physics

2. How much added value does a **high granularity of the calorimeter** cells offer over the 1D and 28D representations?



Three "nested" datasets:

Three "nested" datasets:

1. One-dimensional energy sum: minimizer of Cross-Validation MSE loss (XGBoost)

#### Three "nested" datasets:

- 1. One-dimensional energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
- 2. 27 features + 1D energy sum: minimizer of Cross-Validation MSE loss (XGBoost)

#### Three "nested" datasets:

- 1. One-dimensional energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
- 2. 27 features + 1D energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
- 3. Full calorimeter (51200-dimensional) + 28 features: custom CNN from Kieseler et al. (2022)



### Confidence sets for muon energy have proper coverage

Nominal coverage is achieved regardless of the dataset used

## Confidence sets for muon energy have proper coverage



## Confidence sets for muon energy have proper coverage

Nominal coverage is achieved regardless of the dataset used



#### Valuable information in high-granularity calorimeter



10 13

- Intervals are longer as the data becomes lower-dimensional
- Prediction sets can even be larger than Waldo confidence sets (while also not guaranteeing coverage)

# Thanks!

Carnegie Mellon University

# Likelihood-free Frequentist Inference (LF2I)

https://arxiv.org/pdf/2107.03920.pdf



A modular framework:

1. central branch: parameterized odds

 $\mathbb{O}(X;\theta) := \frac{\mathbb{P}(Y=1 \,|\, \theta, X)}{\mathbb{P}(Y=0 \,|\, \theta, X)}$ used to construct test statistics  $\tau(\mathcal{D}; \theta_0)$ 

2. left branch: quantile regression to estimate critical values  $C_{\theta_0}$  for  $\tau(\mathcal{D}; \theta_0)$  for hypothesis tests

 $H_0: \theta = \theta_0 \text{ versus } H_1: \theta \neq \theta_0, \quad \forall \theta \in \Theta$ 

→ (1 + 2) use Neyman inversion:

 $\left\{ \theta_0 \in \Theta \, | \, \hat{\tau}(\mathscr{D} = D; \theta_0) \text{ in acceptance region} \right\}$ 

**3. right branch:** assess empirical coverage across  $\Theta$  by regressing  $\mathbb{I}\{\theta \in \mathscr{C}(\mathscr{D}) | \theta\}$  against  $\theta$ 

## Likelihood-free Frequentist Inference (LF2I)



- Left branch guarantees coverage provided that the quantile regressor is well estimated
- Computing the test statistics involves optimization/ integration procedures that negatively affect the power of the resulting test;

$$\operatorname{LR}(\mathcal{D};\Theta_0) = \log \frac{\sup_{\theta \in \Theta_0} \mathcal{L}(\mathcal{D};\theta)}{\sup_{\theta \in \Theta} \mathcal{L}(\mathcal{D};\theta)} \longrightarrow \Lambda(\mathcal{D};\Theta_0) := \log \frac{\sup_{\theta_0 \in \Theta_0} \prod_{i=1}^n \mathbb{O}(\mathbf{X}_i^{\operatorname{obs}};\theta_0)}{\sup_{\theta \in \Theta} \prod_{i=1}^n \mathbb{O}(\mathbf{X}_i^{\operatorname{obs}};\theta)}$$

### **Bias and coverage of prediction intervals**

**Train on**  $(X_1, \theta_1), \dots, (X_B, \theta_B) \sim f(X, \theta)$  and output  $\hat{\theta} = \hat{\mathbb{E}}[\theta | X]$ 

-> posterior mean, which depends on marginal since  $f(X, \theta) = f(X | \theta) f(\theta)$ 

**D** What about coverage of standard prediction intervals? Construct a  $1 - \alpha$  interval of the form  $\hat{\theta} \pm z_{1-\alpha/2}\hat{\sigma}$ 

-> Prediction intervals over-cover when  $bias(\hat{\theta}) = 0$  and under-cover for large bias values



## Is it useful to divide by $\mathbb{V}[\theta | X]$ ?

**Waldo** requires to estimate  $\mathbb{V}[\theta | X]$ . Why not simply use  $\tau^{Waldo-novar}(X; \theta) := (\mathbb{E}[\theta | X] - \theta)^2$ ?

□ Reject  $H_0$  if  $(X_1, ..., X_n) \in R$ . Let  $\mathscr{P}^{Waldo} = \mathbb{P}_{\theta}[(X_1, ..., X_n) \in R]$  be the **power function** of the Waldo test setting: inference on the shape of a **Pareto** likelihood  $X \sim Pareto(\theta, x_{min} = 1), \theta \sim \mathcal{U}(0, 60)$ 



 $\mathcal{P}^{Waldo} \gg \mathcal{P}^{Waldo-novar}$ 

### Waldo appears to be a pivotal test statistic

 $\Box$  A **pivot** is a function of the data and the unknown parameter  $\theta$ , whose distribution does not depend on  $\theta$ .



## Combining frequentist coverage with prior knowledge



#### **Coverage guarantees**

Assumption 1 (Uniform consistency) Let  $F(\cdot|\theta)$  be the cumulative distribution function of the test statistic  $\lambda(\mathcal{D};\theta_0)$  conditional on  $\theta$ , where  $\mathcal{D} \sim F_{\theta}$ . Let  $\widehat{F}_{B'}(\cdot|\theta)$  be the estimated conditional distribution function, implied by a quantile regression with a sample  $\mathcal{T}'$  of B' simulations  $\mathcal{D} \sim F_{\theta}$ . Assume that the quantile regression estimator is such that

$$\sup_{\lambda \in \mathbb{R}} |\widehat{F}_{B'}(\lambda|\theta_0) - F(\lambda|\theta_0)| \xrightarrow{\mathbb{P}}_{B' \longrightarrow \infty} 0.$$

**Theorem 1** Let  $C_{B'} \in \mathbb{R}$  be the critical value of the test based on a strictly continuous statistic  $\lambda(\mathcal{D}; \theta_0)$  chosen according to Algorithm 1 for a fixed  $\alpha \in (0, 1)$ . If the quantile estimator satisfies Assumption 1, then,

$$\mathbb{P}_{\mathcal{D}|\theta_0, C_{B'}}(\lambda(\mathcal{D}; \theta_0) \le C_{B'}) \xrightarrow[B' \to \infty]{a.s.} \alpha,$$

where  $\mathbb{P}_{\mathcal{D}|\theta_0,C_{B'}}$  denotes the probability integrated over  $\mathcal{D} \sim F_{\theta_0}$  and conditional on the random variable  $C_{B'}$ .

#### **Coverage guarantees**

Assumption 1 (Uniform consistency) Let  $F(\cdot|\theta)$  be the cumulative distribution function of the test statistic  $\lambda(\mathcal{D};\theta_0)$  conditional on  $\theta$ , where  $\mathcal{D} \sim F_{\theta}$ . Let  $\widehat{F}_{B'}(\cdot|\theta)$  be the estimated conditional distribution function, implied by a quantile regression with a sample  $\mathcal{T}'$  of B' simulations  $\mathcal{D} \sim F_{\theta}$ . Assume that the quantile regression estimator is such that

$$\sup_{\lambda \in \mathbb{R}} |\widehat{F}_{B'}(\lambda|\theta_0) - F(\lambda|\theta_0)| \xrightarrow{\mathbb{P}} 0.$$

**Theorem 1** Let  $C_{B'} \in \mathbb{R}$  be the critical value of the test based on a strictly continuous statistic  $\lambda(\mathcal{D}; \theta_0)$  chosen according to Algorithm 1 for a fixed  $\alpha \in (0, 1)$ . If the quantile estimator satisfies Assumption 1, then,

$$\mathbb{P}_{\mathcal{D}|\theta_0, C_{B'}}(\lambda(\mathcal{D}; \theta_0) \le C_{B'}) \xrightarrow[B' \to \infty]{a.s.} \alpha,$$

where  $\mathbb{P}_{\mathcal{D}|\theta_0,C_{B'}}$  denotes the probability integrated over  $\mathcal{D} \sim F_{\theta_0}$  and conditional on the random variable  $C_{B'}$ .

From Dalmasso, Masserano, Zhao, Izbicki, Lee (2021). Available at https://arxiv.org/pdf/2107.03920.pdf