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Science relies heavily on high-fidelity simulators

Image adapted from Cranmer K., Brehmer J., Louppe G., PNAS (2020)
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We are interested in stochastic simulators

Image credit: Kyle Cranmer
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We are interested in stochastic simulators

Image credit: Kyle Cranmer

Simulators that encode a likelihood and generate observable data
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Likelihood-Free Inference (LFI)
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Constraining parameters while guaranteeing coverage
Recent advances in LFI1. Use ML algorithms and simulated data to directly estimate key inferential quantities: 

1. E.g. Heinrich (2022); Miller et al. (2021); Papamakarios et al. (2016); Lueckmann et al (2016); Izbicki et al. (2014); Thomas et al (2014); Cranmer et al. (2015)

use {(θ1, X1), …, (θB, XB)},  where θ ∼ πθ, X ∼ Fθ θ
⏟
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Hinders the reliability of scientific conclusions
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⏟

Parameters

, f (θ |x)
Posteriors

, ℒ(θ; x)
Likelihoods

, ℒ(θ1; x)/ℒ(θ2; x)
Likelihood ratios

Goals: 

1. Recalibrate predictions and/or posteriors    confidence sets with frequentist guarantees for finite  across n Θ

ℙ(θ ∈ ℛ(Xo) |θ) = 1 − α ∀θ ∈ Θ, Xo = (X1, …, Xn)

2. Check actual coverage across the whole , without costly Monte-Carlo simulationsΘ

Do these methods give reliable measures of uncertainty around parameters of interest? 

Hermans et al. (2021) showed all algorithms produce overconfident approximations: # [$[θ ∈ Θ ̂p(θ|x)(1 − α)]] < 1 − α

Hinders the reliability of scientific conclusions
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τ (Xo; θ )

Wald test statistic (1D case):  

 τWald(X; θ0) := ( ̂θ MLE − θ0)2

,[ ̂θ MLE]

Waldo test statistic: 

 τWaldo(X; θ0) := (#[θ |X ] − θ0)T ,[θ |X ]−1(#[θ |X ] − θ0)
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Waldo
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Waldo

Posterior: NPE, etc… 
Prediction (square loss): 
1. #[θ |X ],  2. #[(θ − #[θ |X ])2 |X ] = ,[θ |X ]
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Statistical Properties
Synthetic example: estimate mean of components of a Gaussian mixture (as in Lueckmann et al. 2021)

X |θ ∼ 1
2 -(θ, I) + 1

2 -(θ,  0.01I), θ ∈ ℝ2
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Statistical Properties
Synthetic example: estimate mean of components of a Gaussian mixture (as in Lueckmann et al. 2021)

X |θ ∼ 1
2 -(θ, I) + 1

2 -(θ,  0.01I), θ ∈ ℝ2

Coverage: Waldo recalibrates posterior credible 
regions to account for estimation error and/or bias, 
regardless of prior and sample size

Power (expected size): if the prior is correctly 
specified, Waldo still benefits from the additional 
information
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Statistical Properties (coverage diagnostics) 
Synthetic example: estimate mean of a Gaussian mixture (as in Lueckmann et al. 2021)

X |θ ∼ 1
2 -(θ, I) + 1

2 -(θ,  0.01I), θ ∈ ℝ2

Waldo Credible Region



Muons are one of the elementary particles described by the Standard Model. 
Their importance is mainly due to two facts: first, they emerge as a signature in processes which could signal the 
existence of new physics, and second, they are (relatively) easy to identify.
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Inference for calorimetric muon energy measurements
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Right: transverse slice of CMS, one of the particle detectors 
at the LHC in Geneva.

Inference for calorimetric muon energy measurements
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Data obtained from Geant41 with incoming energy 
between 50 GeV and 8000 GeV
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28 features2 extracted from the spatial and energy 
information of the calorimeters cells. Three main groups:

1. general properties of the energy deposition (e.g. 
sum of energy above/below a threshold)

2. more fine-grained information (e.g. moments of the 
energy distributions in different regions over )z

3. custom procedure that isolates clusters of 
deposited energy along the track

sum energy deposits over 0.1 GeV to get one-
dimensional energy-sum data

11
1. Agostinelli et al. (2003); 2. From Kieseler et al. (2022)
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Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming 
muon had and construct a confidence set for it with proper coverage?

goal: reconstruct physical process that produced a muon and discover new physics

2. How much added value does a high granularity of the calorimeter cells offer over the 1D and 
28D representations? 

          goal: devise better and more cost-effective calorimeters

12
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Prediction algorithms

Image credit: Kieseler et al. (2022)

Three “nested” datasets:
1. One-dimensional energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
2. 27 features + 1D energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
3. Full calorimeter (51200-dimensional) + 28 features: custom CNN from Kieseler et al. (2022)
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Confidence sets for muon energy have proper coverage
Nominal coverage is achieved regardless of the dataset used
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Valuable information in high-granularity calorimeter

Intervals are longer as the data 
becomes lower-dimensional 

Prediction sets can even be larger 
than Waldo confidence sets (while 
also not guaranteeing coverage)



Thanks!
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Likelihood-free Frequentist Inference (LF2I)

A modular framework: 
1. central branch: parameterized odds 

                          

used to construct test statistics 

1(X; θ ) := ℙ(Y = 1 |θ, X )
ℙ(Y = 0 |θ, X )

τ(2; θ0)
2. left branch: quantile regression to estimate critical 

values  for  for hypothesis tests  

                   

      (1 + 2) use Neyman inversion: 

                          

Cθ0 τ(2; θ0)
H0 : θ = θ0 versus H1 : θ ≠ θ0, ∀θ ∈ Θ

{θ0 ∈ Θ | ̂τ (2 = D; θ0) in acceptance region}
3. right branch: assess empirical coverage across  

by regressing  against 
Θ

${θ ∈ 4(2) |θ} θ

Image credit: Dalmasso et al. (2021)

https://arxiv.org/pdf/2107.03920.pdf

https://arxiv.org/pdf/2107.03920.pdf


Likelihood-free Frequentist Inference (LF2I)
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Computing the test statistics involves optimization/
integration procedures that negatively affect the 
power of the resulting test;

1. Image adapted from Dalmasso et al. (2021)

Left branch guarantees coverage provided that the 
quantile regressor is well estimated



Bias and coverage of prediction intervals
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Train on  and output  

               posterior mean, which depends on marginal since  

(X1, θ1), …, (XB, θB) ∼ f (X, θ ) ̂θ = #̂[θ |X ]
f (X, θ ) = f (X |θ )f (θ )

Prediction intervals over-cover when  and under-cover for large bias values  bias( ̂θ ) = 0

Simple univariate Gaussian example: 

 

 

Construct confidence sets via 

• Likelihood-ratio test 
• Waldo  

     and 

• Prediction sets

θ ∼ -(μ = 0, σ = 2)
X |θ ∼ -(θ,  σ = 1)

Left: means of upper 
and lower bounds of 
interval estimates for 
100,000 observations 
divided in 38 bins over 
the true parameter. 

Right: empir ica l 
coverage of the 
intervals on the left 
as a function of the 
true parameter.

What about coverage of standard prediction intervals? Construct a  interval of the form  

               Coverage is a strictly decreasing function of 

1 − α ̂θ ± z1−α/2 ̂σ
|bias( ̂θ ) | = |#[ ̂θ ] − θ |

Coverage
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Is it useful to divide by ?,[θ |X]
Waldo requires to estimate . Why not simply use  ?,[θ |X ] τWaldo−novar(X; θ ) := (#[θ |X ] − θ )2

Reject  if . Let  be the power function of the Waldo test                                                                  
    setting: inference on the shape of a Pareto likelihood 

H0 (X1, …, Xn) ∈ R 5Waldo = ℙθ[(X1, …, Xn) ∈ R]
X ∼ Pareto(θ, xmin = 1), θ ∼ 6(0,60)

5Waldo ≫ 5Waldo−novar
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Waldo appears to be a pivotal test statistic
A pivot is a function of the data and the unknown parameter , whose distribution does not depend on . θ θ
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Combining frequentist coverage with prior knowledge

No prior knowledge: uniform prior, 5Waldo = 5Wald Well-specified prior: , -(40,1) 5Waldo ≫ 5Wald

Simple setting: inference on the mean of a univariate Gaussian likelihood X ∼ -(θ,1), θ ∼ πθ
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Coverage guarantees
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Coverage guarantees

From Dalmasso, Masserano, Zhao, Izbicki, Lee (2021). Available at https://arxiv.org/pdf/2107.03920.pdf

https://arxiv.org/pdf/2107.03920.pdf

