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—% Simulators that encode a likelihood and generate observable data
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Constraining parameters while guaranteeing coverage

O Recent advances in LFI1. Use ML algorithms and simulated data to directly estimate key inferential quantities:

use {01, X)), ... (Op, Xp)), Where 0 ~ 5, X~ Fy  —» 0, f(01%) , L0;x) , L 0); 0)] L (0; %)

Parameters posteriors Likelihoods Likelihood ratios

O Do these methods give reliable measures of uncertainty around parameters of interest?
- Hermans et al. (2021) showed all algorithms produce overconfident approximations: [E [U[G € Ol — a)]] <l-a

-3 Hinders the reliability of scientific conclusions

O Goals:

1. Recalibrate predictions and/or posteriors — confidence sets with frequentist guarantees for finite 7 across ®

PO e RX)0)=1-a VOEO, X =(X,...X,)

2. Check actual coverage across the whole ®, without costly Monte-Carlo simulations




Neyman construction of confidence sets

O Ingredients:

1.Data X ~ F)
2. Test statistic 7(X; 0)
3. Critical values Cy_,

Theorem (Neyman 1937)
Constructing a 1 — o confidence set for 6 is equivalent to testing

H0:0=00 VS. HAZB#GO

for every 6y € ©.




Neyman construction of confidence sets

O Ingredients:

1.Data X ~ F)
2. Test statistic 7(X; 0)
3. Critical values Cy_,

Theorem (Neyman 1937)
Constructing a 1 — o confidence set for 6 is equivalent to testing

H0:0=00 VS. HAZB#GO

for every 6y € ©.

i. Rejection region for
7(X;6,), V6, € O

0.0
2.5
5.0
7.5

6 1004

12,5
15.0
17.5

20.0

1(X,;0)




Neyman construction of confidence sets

O Ingredients:

1.Data X ~ F)
2. Test statistic 7(X; 0)
3. Critical values Cy_,

Theorem (Neyman 1937)
Constructing a 1 — o confidence set for 6 is equivalent to testing

Hy:0=06y vs. Hp:0+# 6,

for every 6y € ©.

i. Rejection region for
7(X;6,), V6, € O

0.04::
2.5
5.0
7.5

6 100

1254

15.04

17.5

20.04




Neyman construction of confidence sets

O Ingredients:

1.Data X ~ F)
2. Test statistic 7(X; 0)
3. Critical values Cy_,

Theorem (Neyman 1937)
Constructing a 1 — o confidence set for 6 is equivalent to testing

H0:0=00 VS. HAZB#GO

for every 6y € ©.

i. Rejection region for
7(X;6,), V6, € O

i. T XO; 90), 00 €0

0.0

2.5
5.0
7.5

6 100

1254

150

1754

20.04 -




Neyman construction of confidence sets

0 Ingredients: e —
251 ‘,’ —
1.DataX~F9 ) L . 5.0 “—
2. Test statistic 7(X; 0) s R&ezt'ﬁnézglznéor LE =
iti 7(A50p), &
3. Critical values Cy , 0 0 :
’ 6 100 4§=
i. 7(X:0,), 6,€ 0
Theorem (Neyman 1937) 0> -0/ ~0 1251
Constructing a 1 — o confidence set for 0 is equivalent to testing iii. (1 — ) confidence set 15.01
Hy:0=0y vs. Hy:0+#6 175
20.0

for every 6y € ©.




Neyman construction of confidence sets

O Ingredients:

1.Data X ~ F)
2. Test statistic 7(X; 0)
3. Critical values Cy_,

Theorem (Neyman 1937)
Constructing a 1 — o confidence set for 6 is equivalent to testing

H0:0=90 VS. HAZB#GO

for every 6y € ©.

O Wald test statistic (1D case):
(@MLE _ 90)2

TVald(X; ) := —
\/[ QMLE]

0.0
2.54

5.0

i. Rejection region for

t(X;6,), VO, € O

6 100=

i. T XO; 90), 00 S @ 12'5_%

iii. (1 — ) confidence set |

17.5

20.0

:




Neyman construction of confidence sets

O Ingredients:

1.Data X ~ F)
2. Test statistic 7(X; 0)
3. Critical values Cy_,

Theorem (Neyman 1937)
Constructing a 1 — o confidence set for 6 is equivalent to testing

H0:0=90 VS. HAZB#GO

for every 6y € ©.

O Wald test statistic (1D case):

(@MLE _ 90)2

TVald(X; ) := —
\/[ QMLE]

~

0.0
2.54

5.0

i. Rejection region for =
7(X;6,), V6, € O "
6 100=

i. T XO; 90), 00 €0

125 =

15.04

iii. (1 — a) confidence set

17.5

20.0

J Waldo test statistic:

TWald()(X; 00) = (E[0 |X] _ HO)T\/[H |X]—1([E[€ |X] - 9())
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Statistical Properties

0 Synthetic example: estimate mean of components of a Gaussian mixture (as in Lueckmann et al. 2021)
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O Coverage: Waldo recalibrates posterior credible
regions to account for estimation error and/or bias,
regardless of prior and sample size

O Power (expected size): if the prior is correctly
specified, Waldo still benefits from the additional
information




Statistical Properties (coverage diagnostics)

0 Synthetic example: estimate mean of a Gaussian mixture (as in Lueckmann et al. 2021)
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Inference for calorimetric muon energy measurements

Muons are one of the elementary particles described by the Standard Model.

Their importance is mainly due to two facts: first, they emerge as a signature in processes which could signal the
existence of new physics, and second, they are (relatively) easy to identify.
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Inputs: 1D energy-sum, 28 features and full calorimeter
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Muon entering the calorimeter in z direction. The colour gradient indicates the logarithmic
energy deposits of a muon with incoming energy =~ 655.7 GeV. Black corresponds to zero,
orange to intermediate, and white to maximum energy.
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Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming
muon had and construct a confidence set for it with proper coverage?

- goal: reconstruct physical process that produced a muon and discover new physics

2. How much added value does a high granularity of the calorimeter cells offer over the 1D and
28D representations?

—¢ goal: devise better and more cost-effective calorimeters

N 12
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Prediction algorithms

Three “nested” datasets:
1. One-dimensional energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
2. 27 features + 1D energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
3. Full calorimeter (51200-dimensional) + 28 features: custom CNN from Kieseler et al. (2022)

HL features

Image credit: Kieseler et al. (2022)
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Confidence sets for muon energy have proper coverage

O Nominal coverage is achieved regardless of the dataset used
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Confidence sets for muon energy have proper coverage

O Nominal coverage is achieved regardless of the dataset used

Confidence and Prediction Sets
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Valuable information in high-granularity calorimeter

Interval Length

O Intervals are longer as the data
becomes lower-dimensional

O Prediction sets can even be larger
than Waldo confidence sets (while
also not guaranteeing coverage)
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i Waldo 28 Features
500’ ) .
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" -4~ Prediction Sets Full Calorimeter
0 1000 2000 3000 4000 5000 6000 7000 8000
True Muon Energy 6 [GeV]
N 15



Carnegie
Mellon
University

Thanks!



Likelihood-free Frequentist Inference (LF2l)

https://arxiv.org/pdf/2107.03920.pdf
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A modular framework:

1. central branch: parameterized odds
P(Y=1|60,X)
P(Y=0|60,X)
used to construct test statistics 7(Z; 6,))

0X;0) =

2. left branch: quantile regression to estimate critical
values CGo for 7(Z; 6,) for hypothesis tests

Hy:0 =0yversusH, : 0 # 6, V00O
—» (1 + 2) use Neyman inversion:

{90 € O|7(Z = D; 6,) in acceptance region}

3. right branch: assess empirical coverage across ©
by regressing {0 € €(2)|0} against 0
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Likelihood-free Frequentist Inference (LF2l)
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Bias and coverage of prediction intervals

O Trainon (X, 6,), ..., (Xg, 05) ~ f(X,0) and output & = E[0| X]
— posterior mean, which depends on marginal since (X, 0) = f(X | 0)f(0)

T What about coverage of standard prediction intervals? Construct a 1 — a interval of the form 0+ Z—un0
- Coverage is a strictly decreasing function of | bias(é) | = | E[0] - 0]

—¥ Prediction intervals over-cover when bias(6) = 0 and under-cover for large bias values

; Marginal: N(u =0, 0 =2) o Coverage
O Simple univariate Gaussian example: == 90% LT confidence sets
6 === 90% prediction sets
=== 90% Waldo confidence sets
51 ---- bisector
0.9
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.
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- as a function of the
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Is it useful to divide by V[0 | X]?

J Waldo requires to estimate V[@ | X ]. Why not simply use ¢W¢/do—novar(x: 9y := (E[0| X ] — 0)* ?

O Reject H,if (X;,...,X,) € R. Let pWaldo — p [(X,, ..., X,) € R] be the power function of the Waldo test
— setting: inference on the shape of a Pareto likelihood X ~ Pareto(6, x,,;,, = 1),0 ~ 2%(0,60)

Power as a function of 6. Coverage at 6* Waldo 0.94, Waldo-exactVar= 0 95, Waldo-novar=0.96
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Waldo appears to be a pivotal test statistic

0 A pivot is a function of the data and the unknown parameter 0, whose distribution does not depend on 6.
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Coverage guarantees

Assumption 1 (Uniform consistency) Let F(:|0) be the cumulative distribution func-
tion of the test statistic A\(D;6y) conditional on 0, where D ~ Fy. Let Fg/(-0) be the
estimated conditional distribution function, implied by a quantile regression with a sample
T of B' simulations D ~ Fy. Assume that the quantile regression estimator is such that

sup | F/ (o) — F(|fo)| ——=— 0.
AeR B'—o

Theorem 1 Let Cp € R be the critical value of the test based on a strictly continuous

statistic A(D;60) chosen according to Algorithm 1 for a fizted a € (0,1). If the quantile
estimator satisfies Assumption 1, then,

Poioy,c (A(D;00) < Cpr) —— a,
B'— o0

where Ppjg, c,, denotes the probability integrated over D ~ Fp, and conditional on the
random variable Cp:.
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