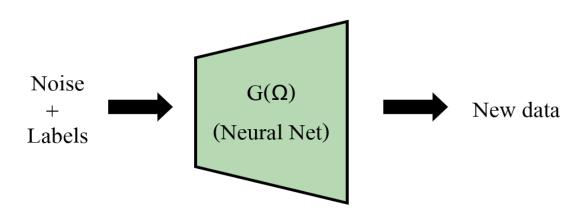
Generative Models for Hadronic Shower Simulation

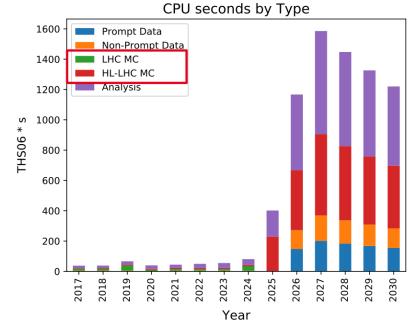
Erik Buhmann, Sascha Diefenbacher, <u>Engin Eren</u>, Frank Gaede, Daniel Hundhausen, Gregor Kasieczka, William Korcari, Anatolii Korol, Katja Krüger, Peter McKeown, Lennart Rustige

10.05.2022 5th Inter Experiment Machine Learning Workshop

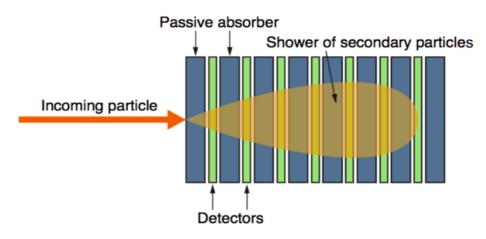
The bottleneck in HEP Computing Resources

- MC simulation is computationally intensive
 - Calorimeters most intensive part of detector simulation
- Generative models potentially offer orders of magnitude speed up
- Amplify statistics of original data set
 - Generate new samples following distribution of original data
 - Significant less time per shower

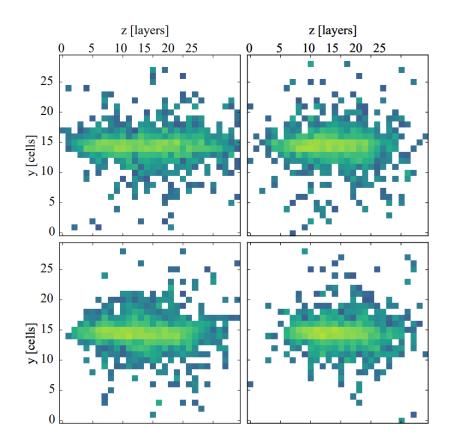




The HEP Software Foundation., Albrecht, J., Alves, A.A. et al. A Roadmap for HEP Software and Computing R&D for the 2020s. Comput Softw Big Sci 3, 7 (2019).

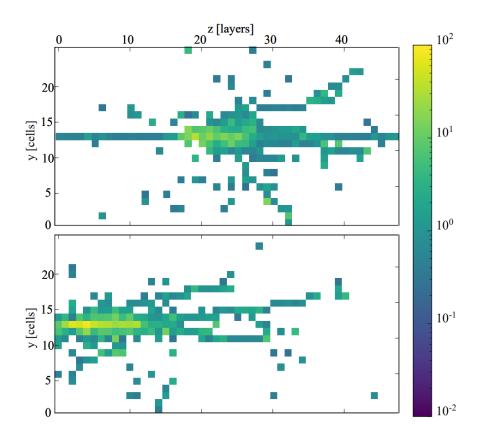


From Photons to Pions



Photon showers

- Predominantly governed by EM interactions
- Compact structure



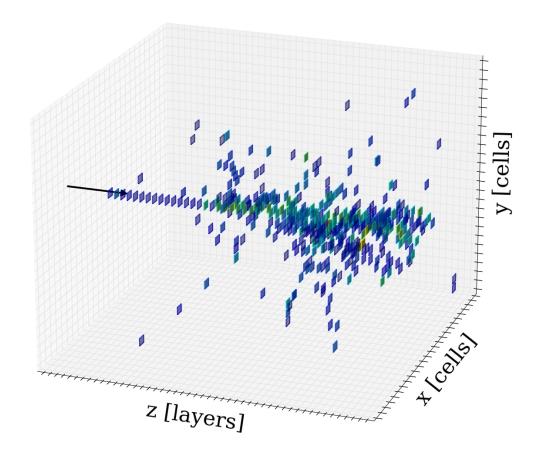
Pion showers

- Hadronic and EM interactions
- Complex structure
- Large event-to-event fluctuations

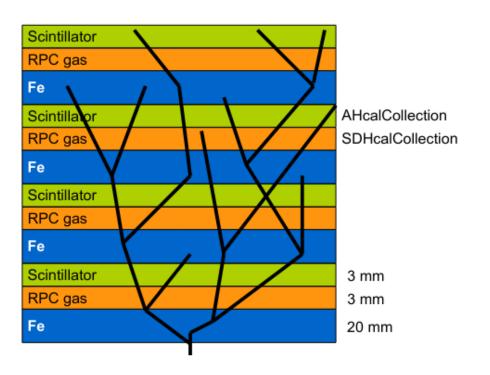
Hard to learn

DESY. | Engin Eren

Pion Dataset



- 500k showers generated with Geant4
- Fixed incident point and angle
- Projected onto 48 x 25 x 25
- Uniform energy: 10 GeV to 100 GeV



Hybrid simulation of ILD Hadron Calorimeter:

- Hits are recorded for scintillator and RPCs at the same time
- Here only scintillator option is used

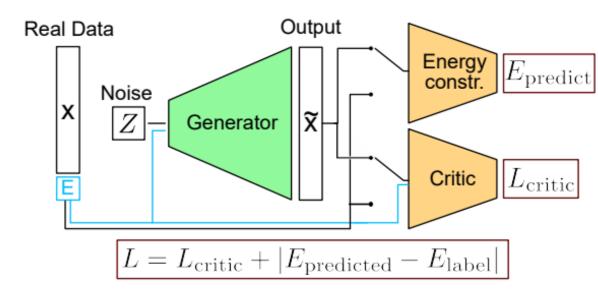
Architectures: GAN and WGAN

Generative Adversarial Neural Network

- Original generative architecture applied for shower generation
- Discriminator and Generator play a minmax game

Wasserstein GAN

- Alternative to classical GAN training
- Wasserstein-1 distance as loss with gradient penalty: improve stability
- Addition of an auxiliary constrainer networks for improved conditioning performance



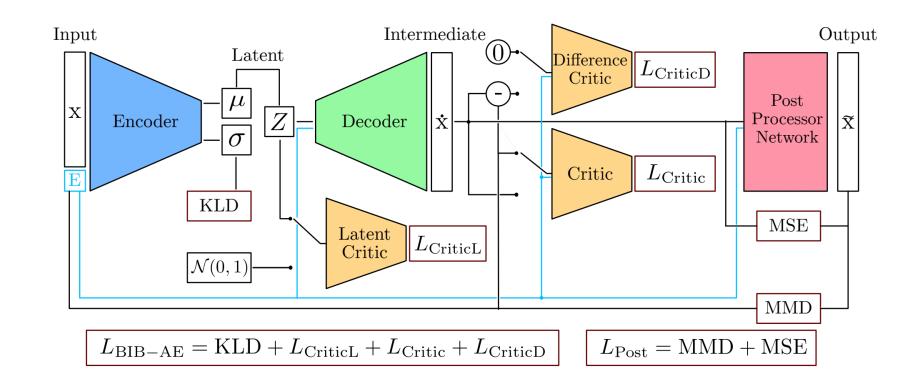
Architectures: BIB-AE

Bounded-Information Bottleneck Autoencoder (BIB-AE)

- Unifies features of both GANs and Variational Autoencoders [*]
- Post-Processor network: Improve per-pixel energies; second training
- Multi-dimensional KDE sampling: better modeling of latent space [**]

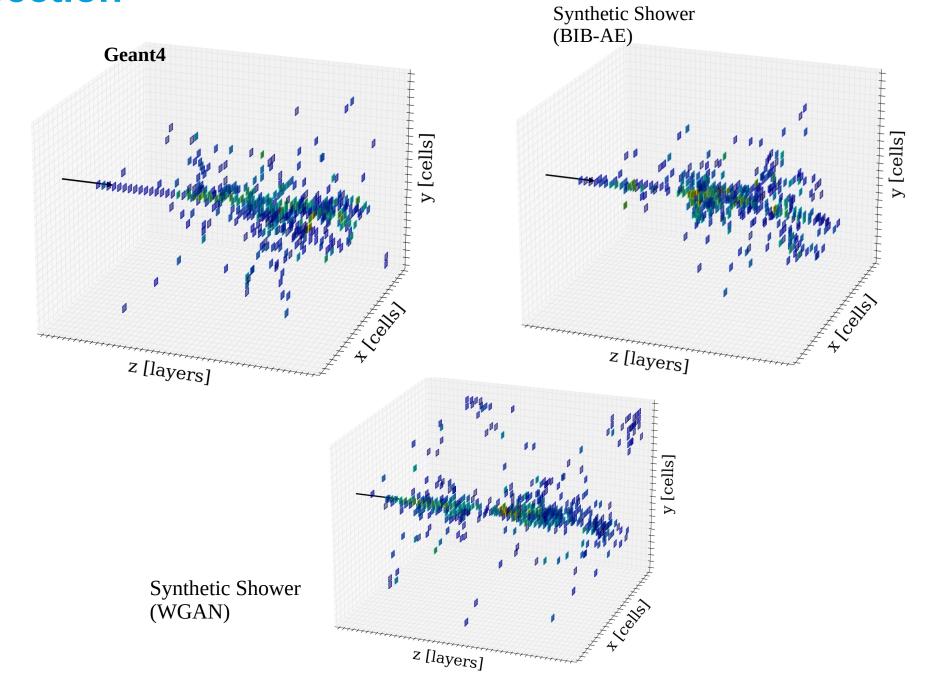
[*] Voloshynovskiy et. al: **Information bottleneck through variational glasses**, arXiv:1912.00830

[**] Buhmann et. al: **Decoding Photons:** Physics in the latent space of a BIB-AE Generative Network, arXiv:2102.12491

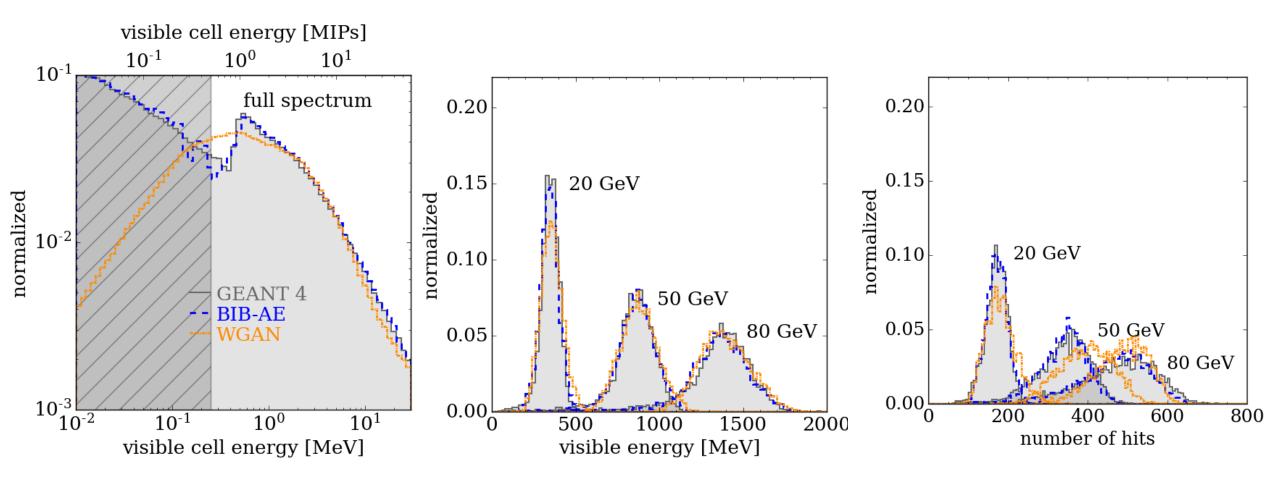


Visual Inspection

At first glance



Pion Shower Results I



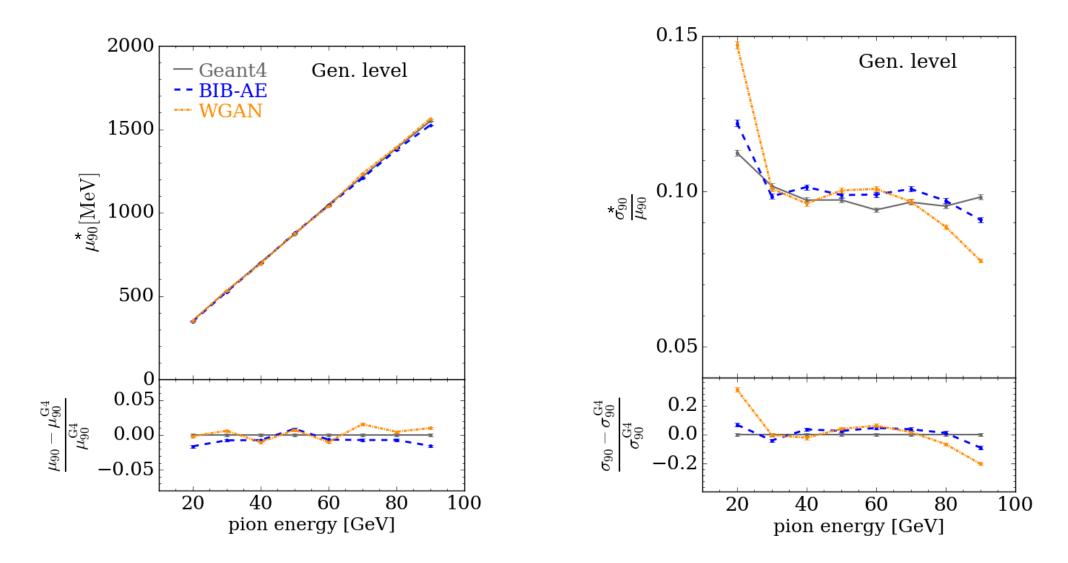
Very good agreement of MIP peak for **BIB-AE** with Post-Processing!

Great agreement with Geant4

Too much hits for WGAN ~50 GeV BIB-AE is better

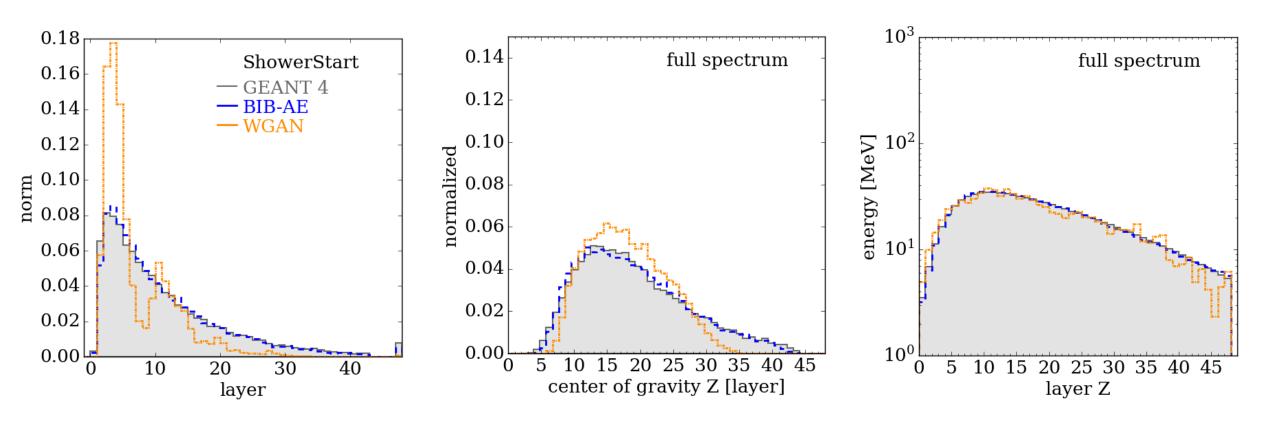
arXiv:2112.09709

Pion Shower Results II



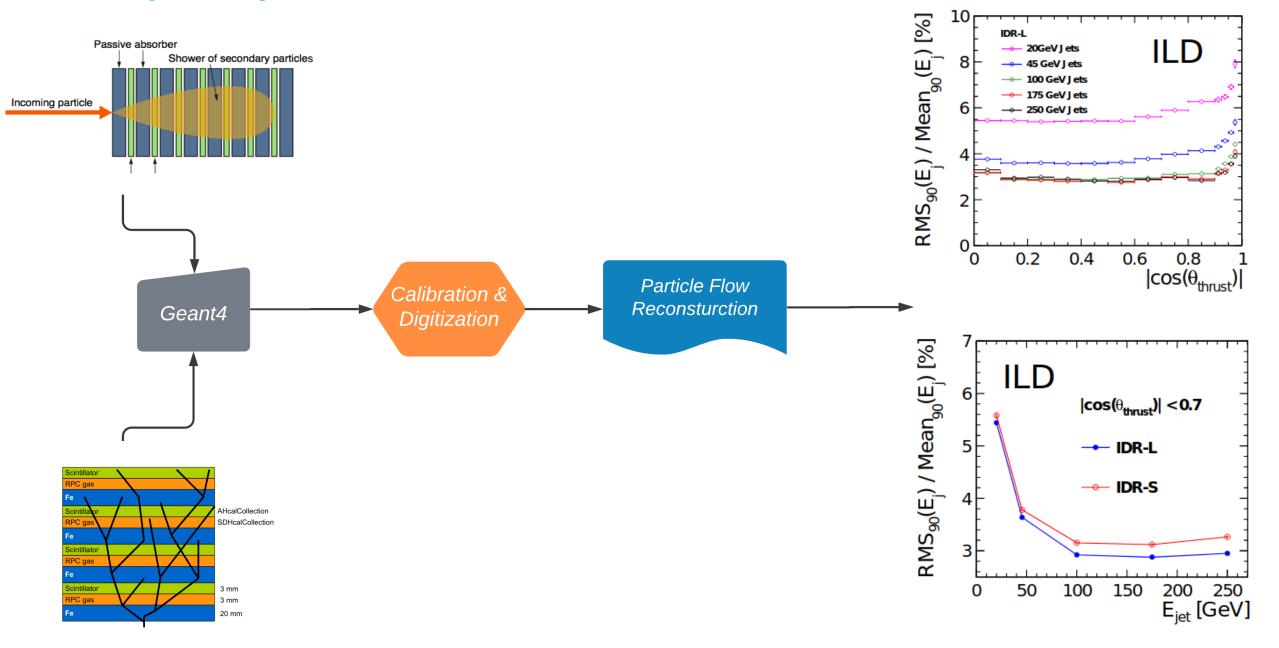
Very crucial quantity to get it right

Pion Shower Results III



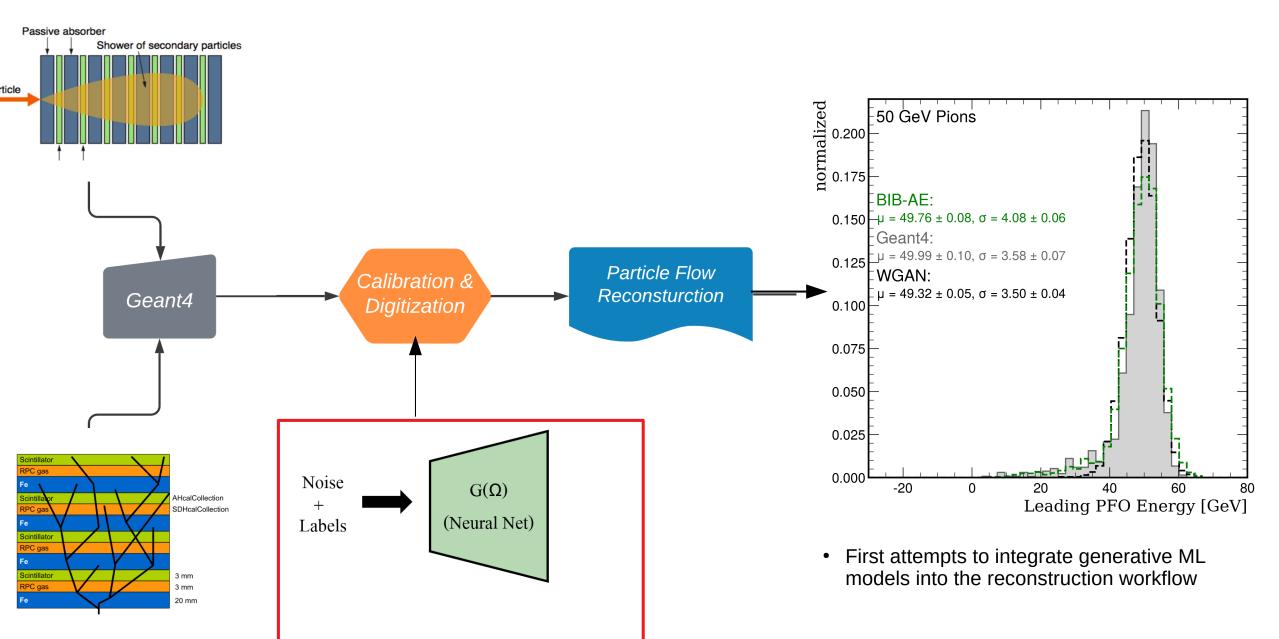
BIB-AE reproduces Geant4 distributions **WGAN** performance is not as great...

ILD Analysis Pipeline

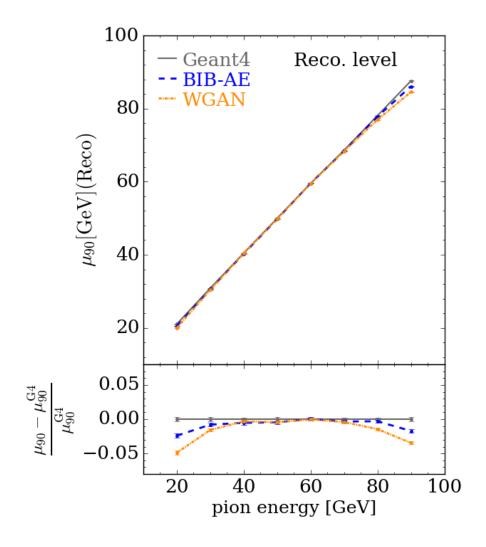


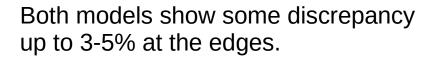
Page 11

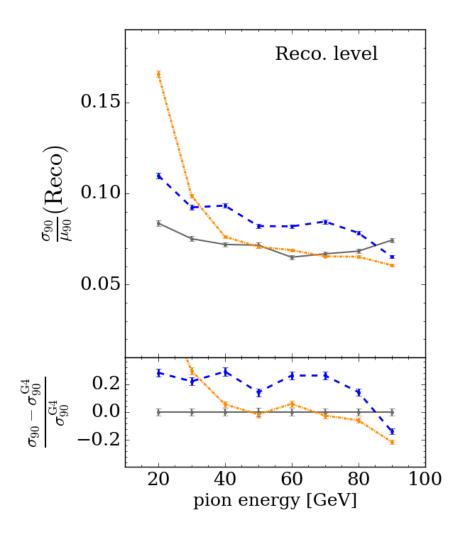
..with Generative Models



Pion Showers after Reconstruction







Very good agreement by **WGAN** in the middle incident energies.

Generation Time Particle Flow Calibration & Reconsturction Geant4 Digitization Very slow... Bottleneck! Noise $G(\Omega)$ (Neural Net) Labels Simulator Time / Shower [ms] Speed-up Hardware CPU Geant4 2684 ± 125 $\times 1$ Compare WGAN 47.923 ± 0.089 $\times 56$ BIB-AE 350.824 ± 0.574 $\times 8$ GPU WGAN $\times 10167$ 0.264 ± 0.002 BIB-AE 2.051 ± 0.005 $\times 1309$

Both models offer significant speedups!

Conclusion

Achieved

- Generative models hold promise for fast simulation of calorimeter showers with high fidelity
- Demonstrated high fidelity simulation of hadronic showers with generative models
 - Submitted to *Machine Learning: Science and Technology*

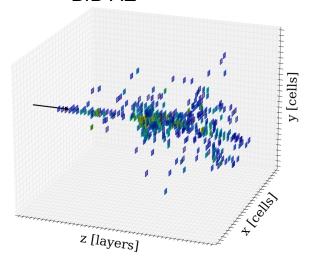
Ongoing Work

- Vary energy and angle simultaneously and study effect on performance
- Incorporate angular conditioning in more sophisticated architectures e.g. BIB-AE

Next Steps

Simulation of hadronic showers including HCAL and ECAL

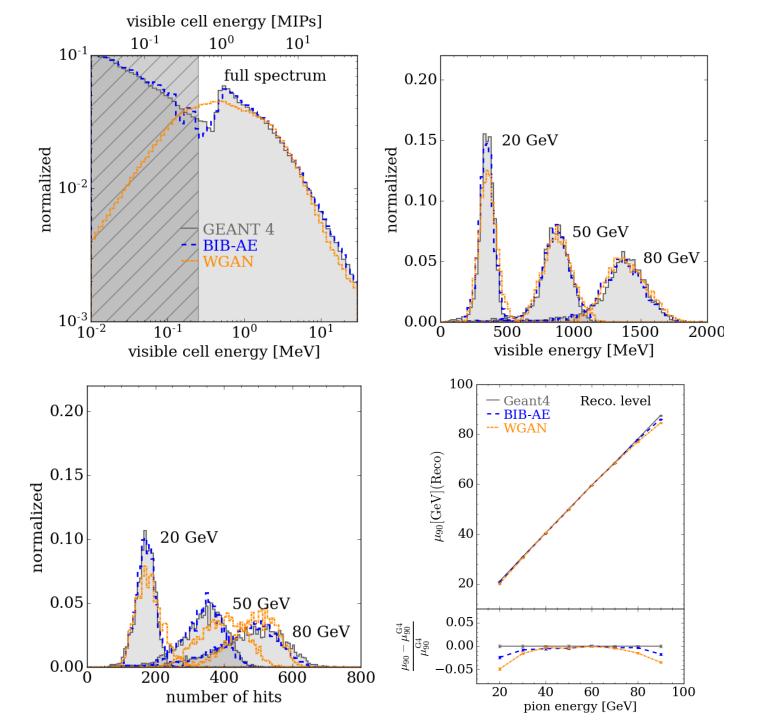
generated shower by **BIB-AE**



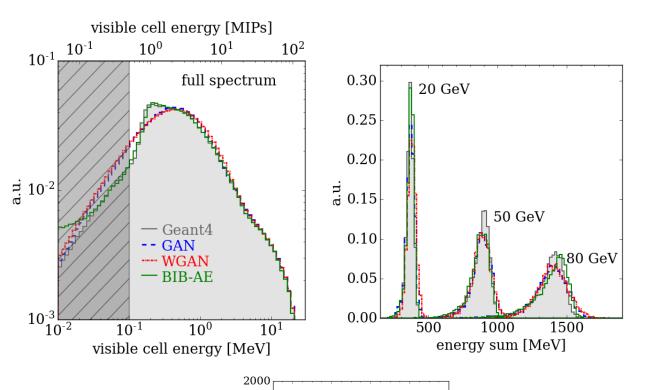
Page 15 **DESY.** | Engin Eren

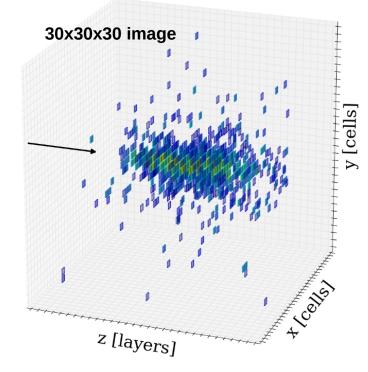
Backup

DESY. Page 16



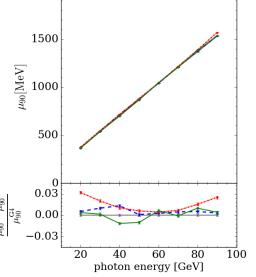
Photon Showers





High fidelity of shower properties are achieved

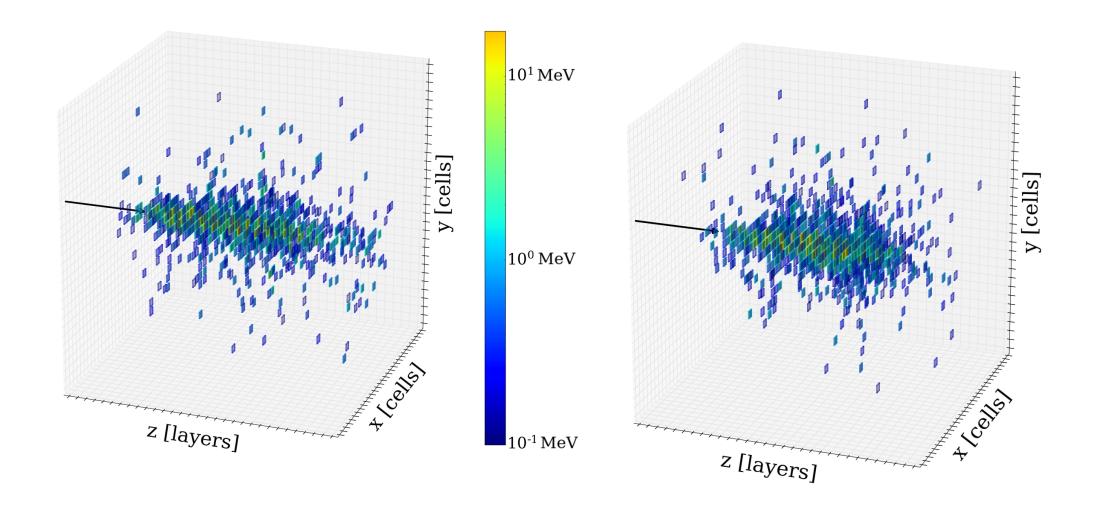
DESY. | Engin Eren



Hardware	Simulator	Photons	
		Time/shower[ms]	Speed-up
CPU	Geant4	4082±170	×1
	WGAN	61.44±0.03	×66
	BIB-AE	95.98±0.08	×43
GPU	WGAN	3.93±0.03	×1039
	BIB-AE	1.60±0.03	×2551

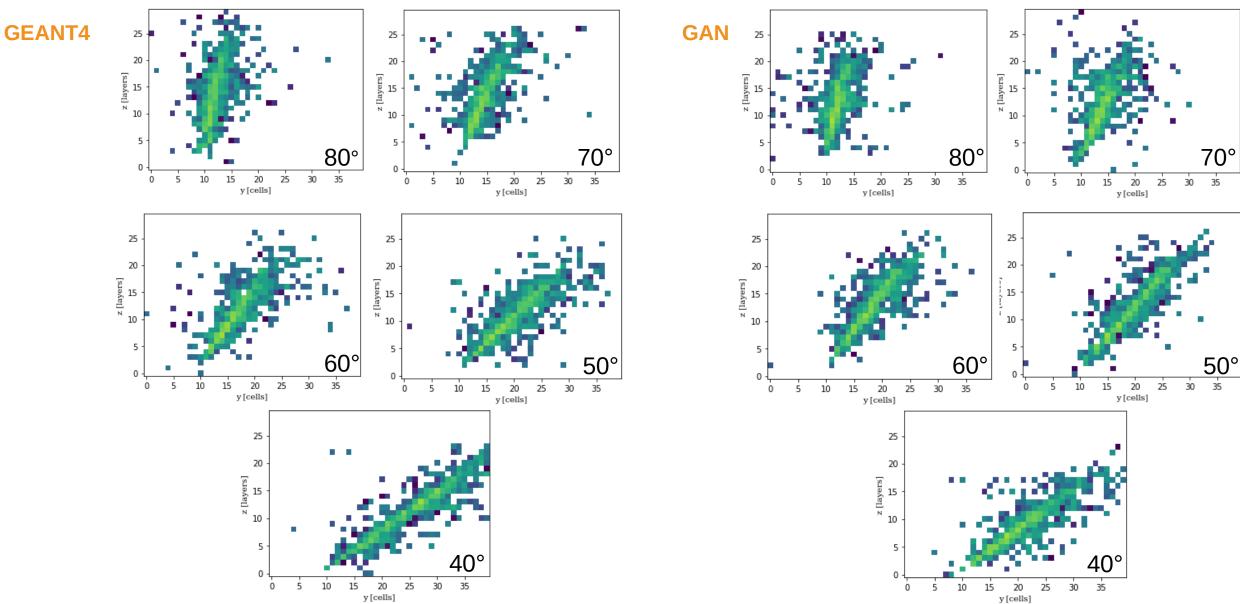
Buhmann, et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed. Comput Softw Big Sci 5, 13 (2021)

Photon Showers



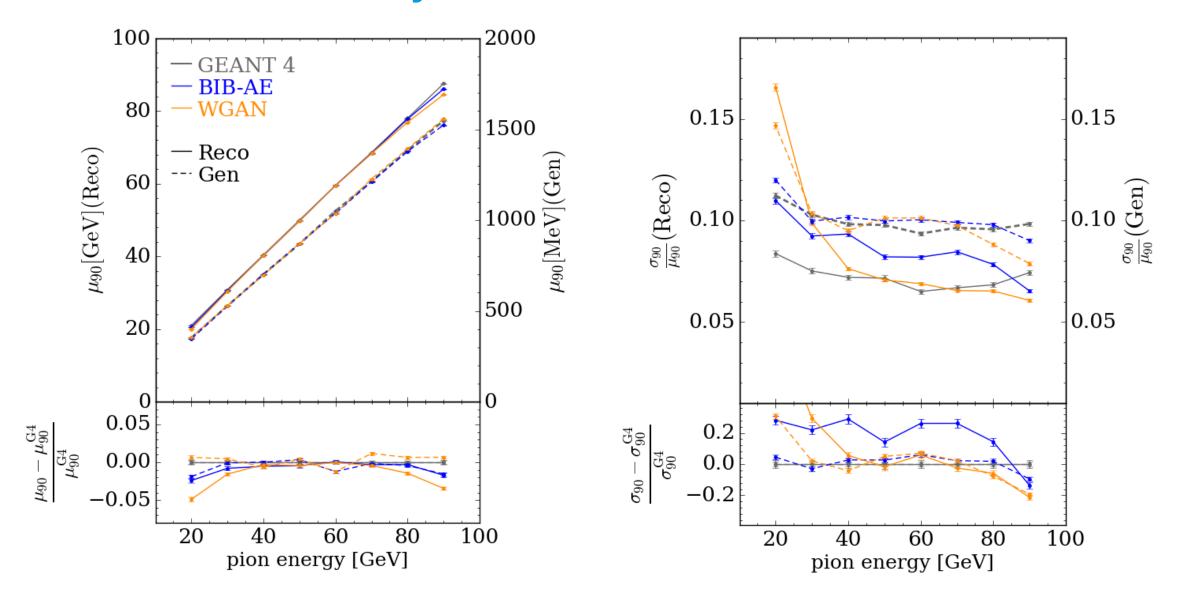
DESY. | Engin Eren

Ongoing work: Add angular conditioning (preliminary)



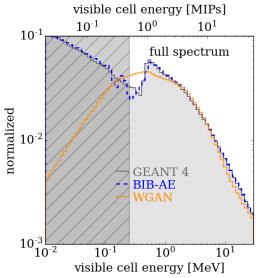
DESY. | Engin Eren

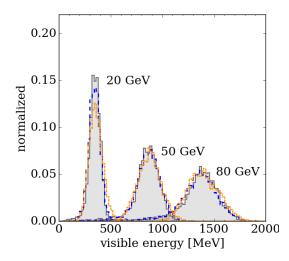
Pion Showers: Linearity and Resolution



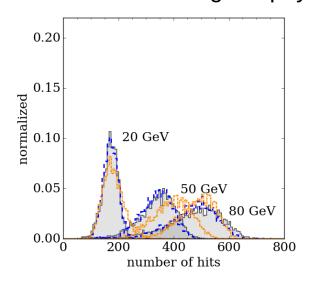
Pion Showers: Results

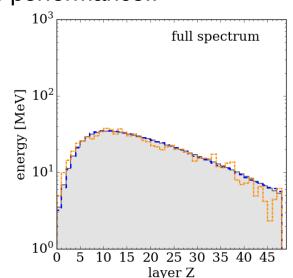
accepted to ML4PS workshop (NeurIPS 2021)

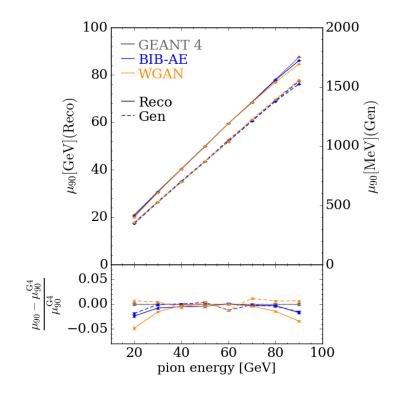




Overall good physics performance..







Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	2684 ± 125	$\times 1$
	WGAN BIB-AE	47.923 ± 0.089 350.824 ± 0.574	×56 ×8
GPU	WGAN BIB-AE	0.264 ± 0.002 2.051 ± 0.005	×10167 ×1309

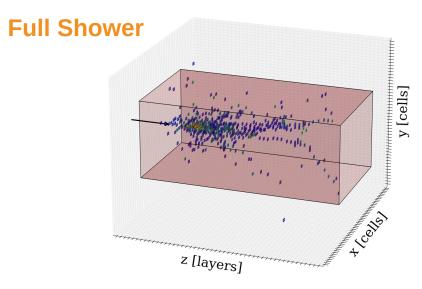
Both models offer significant speedups!

Pion Showers: Computing Time for Inference

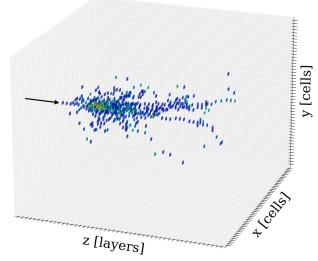
Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	2684 ± 125	$\times 1$
	WGAN BIB-AE	47.923 ± 0.089 350.824 ± 0.574	×56 ×8
GPU	WGAN BIB-AE	0.264 ± 0.002 2.051 ± 0.005	×10167 ×1309

Speed-up of as much as four orders of magnitude on single core of Intel[®] Xeon[®] CPU E5-2640 v4 and NVIDIA[®] A100 for batch size 10000

Pion dataset



Shower Core



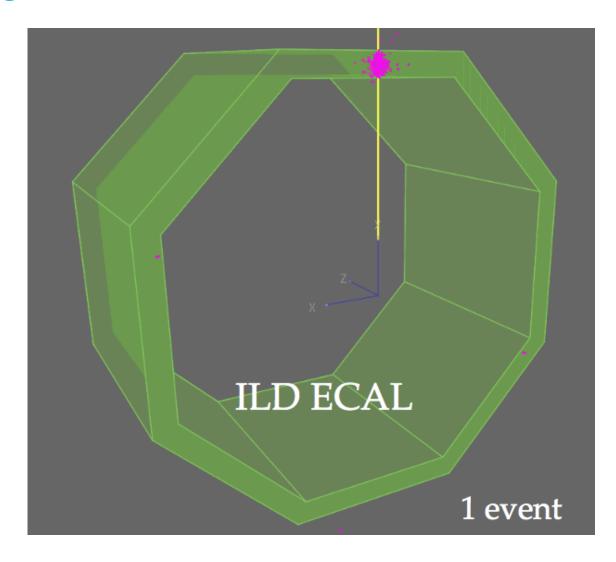
- AHCAL Option
- Remove ECal from geometry
- Significant sparsity in data
 - Use shower core
 - Barely lose any hits
- 500k showers
- Fixed incident point and angle
- Irregular geometry projected into 25x25x48 regular grid
- Uniform energy: 10-100 GeV

DESY. | Engin Eren Page 24

Conditioning requirements for a general simulation

Conditioning for a general calorimeter simulation:

- Incidence point
- Two angles
 - Polar angle: θ
 - Azimuthal angle: φ

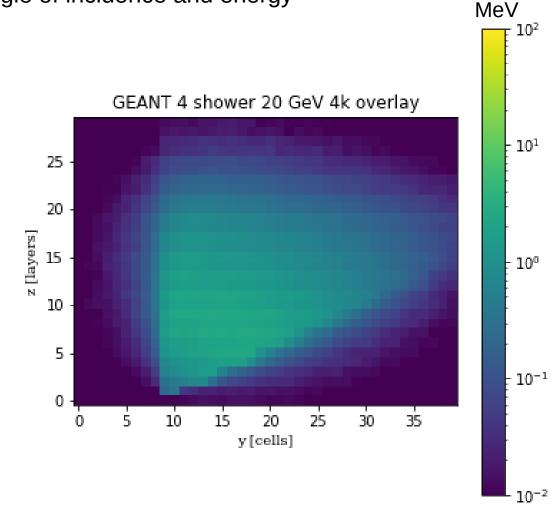


Angular conditioning- Training data

In Progress: condition generative networks on particle's angle of incidence and energy

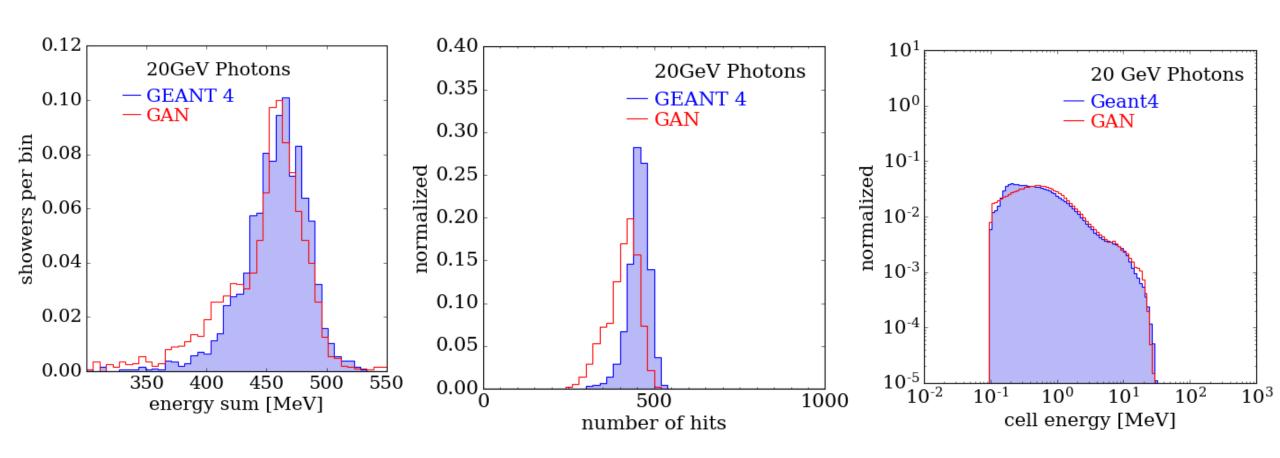
- Start simple:
 - Fixed energy- 20 GeV
 - Only vary polar angle in one direction- from 90°-30°
 - Fixed particle type- photons
- Problem: How to make sure the full shower is contained?
 - Extend the selected grid in y: shape (30,30,40) (z,x,y)
 - Shift gun position

Using 132k showers for training

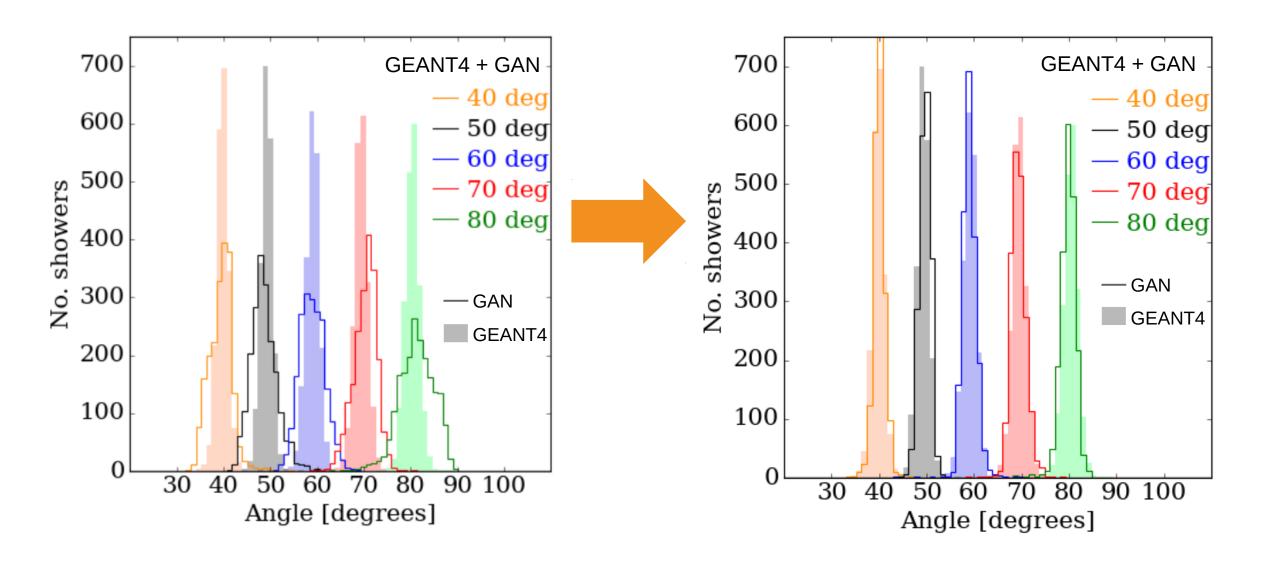


Angular conditioning- Some physics distributions

Compare generated and GEANT4 distributions for a fixed angle of 60 degrees

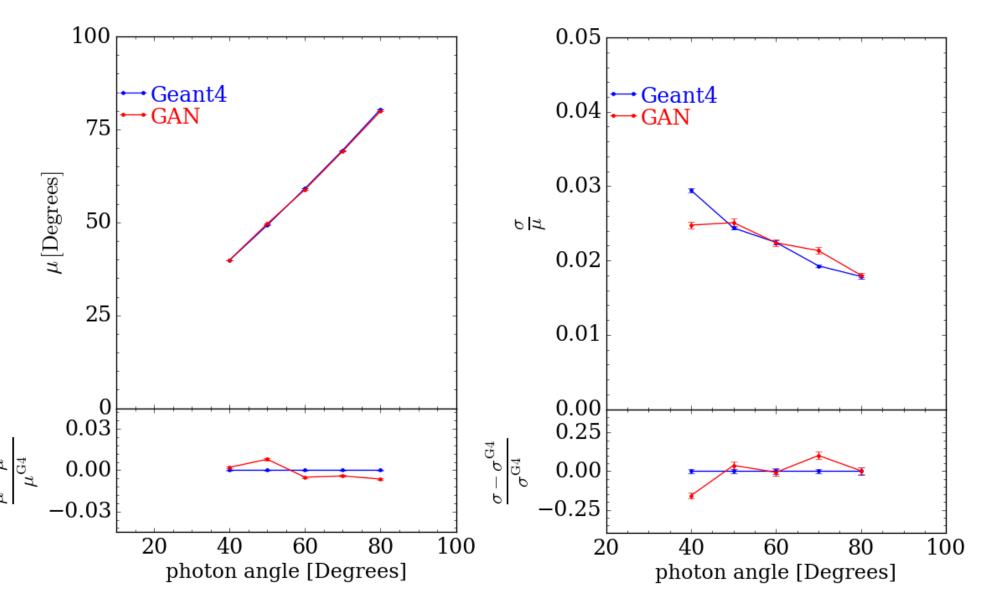


Angular conditioning- With a Constrainer Network



Angular linearity and resolution

 Good overall agreement

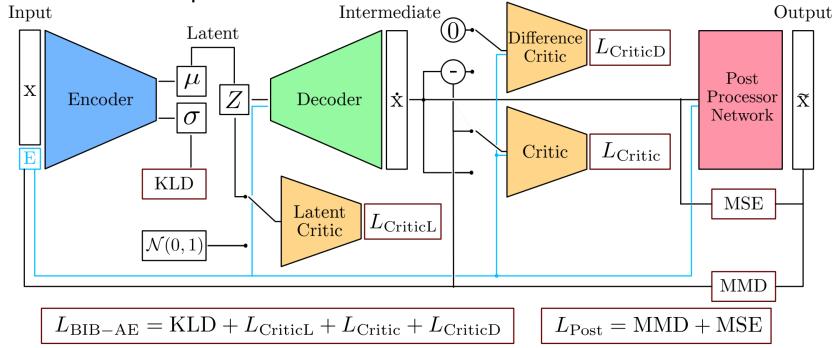


Architectures: BIB-AE

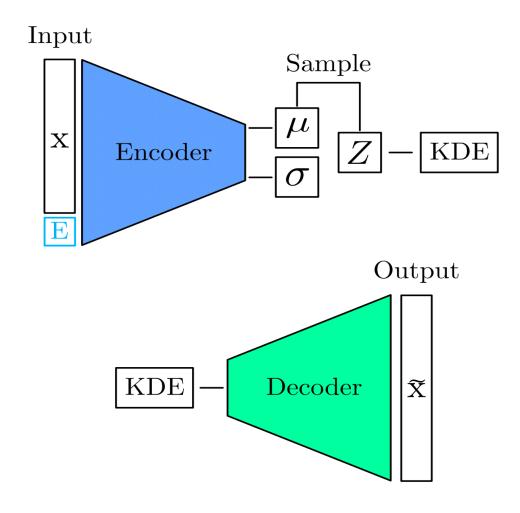
More Details

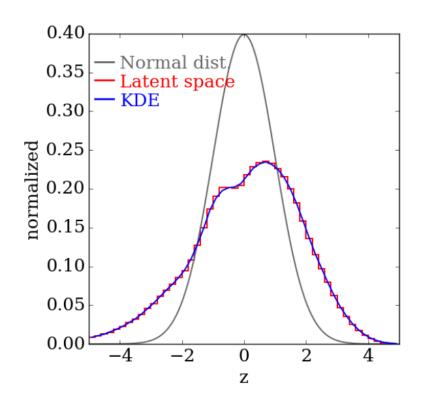
- Unifies features of both GANs and VAEs
- Adversarial critic networks rather than pixel-wise difference a la VAEs
- Improved latent regularisation: additional critic and MMD term
- Post-Processor network: Improve per-pixel energies; second training

- Updates and improvements:
 - Dual and resetting critics: prevent artifacts caused by sparsity
 - Batch Statistics: prevent outliers/ mode collapse
 - Multi-dimensional KDE sampling: better modeling of latent space



Kernel Density Estimation: BIB-AE

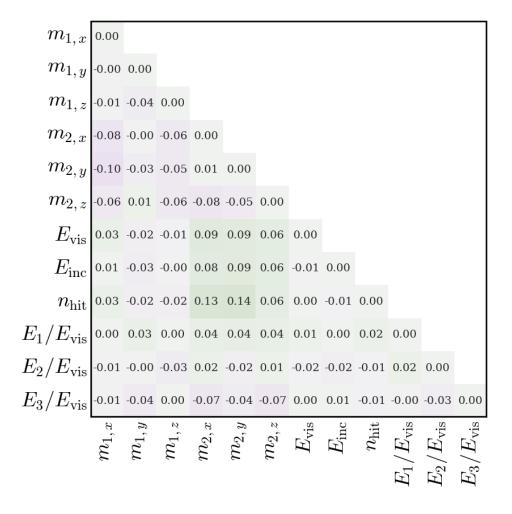




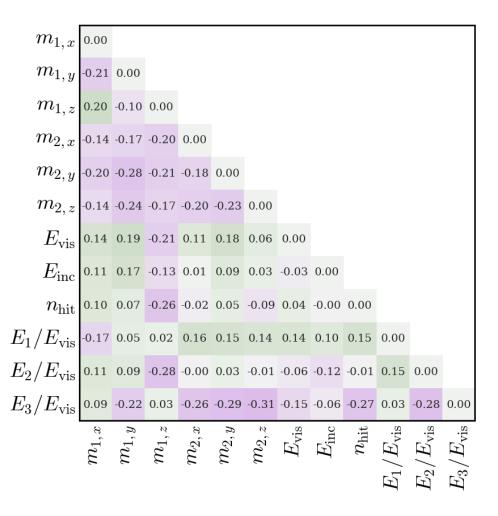
Buhmann et. al: **Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network**, EPJ Web of Conferences 251, 03003 (2021)

Pion correlations

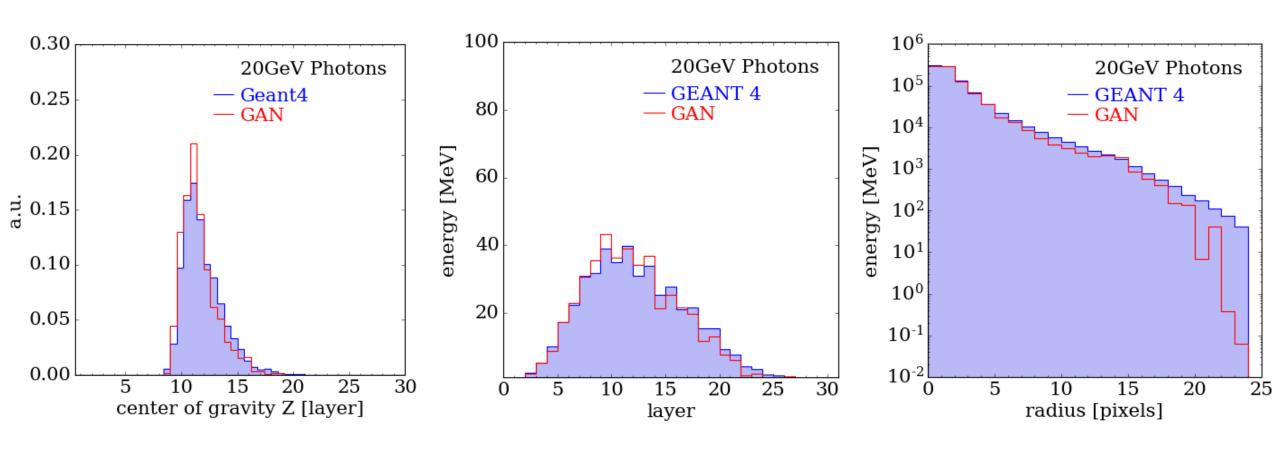
GEANT4 - BIB-AE



GEANT4 - WGAN

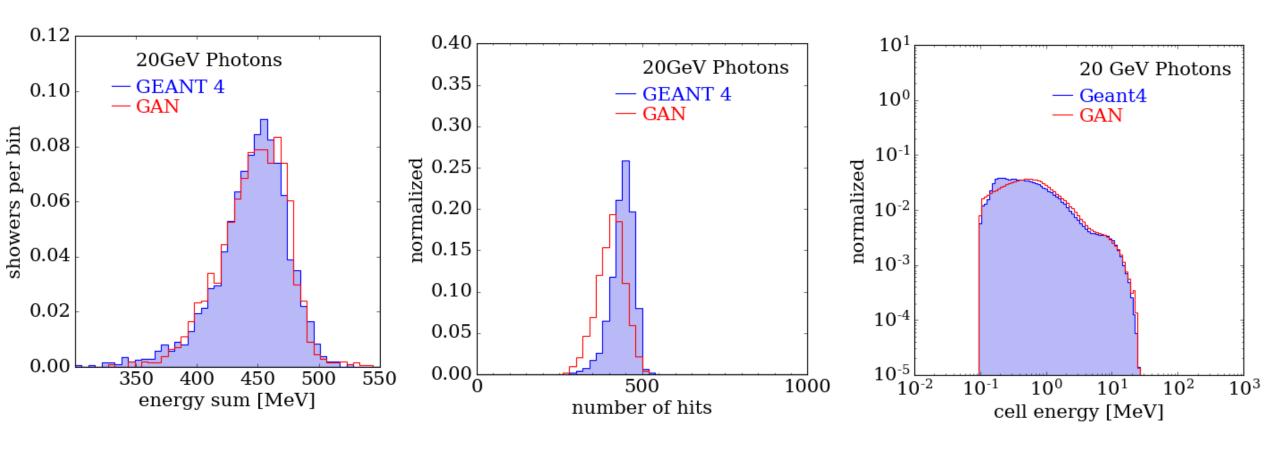


Angular conditioning- 60 degree shower shape distributions



DESY. | ML4Jets | Peter McKeown | 07.07.2021 **Page 33**

Angular conditioning-80 degree other distributions



DESY. | ML4Jets | Peter McKeown | 07.07.2021 **Page 34**