

Cosmological applications of

Truncated Marginal Neural Ratio Estimation

Alex Cole (U. of Amsterdam)
11 May 2022
5th IML Workshop @ CERN
a.e.cole@uva.nl
@a_e_cole

primarily based on [2111.08030]

GRAPPA

U. Liège

Ben Miller

Christoph Weniger

Sam Witte

[Miller et al. '20]

• 2011.13591 (NeurIPS '20 ML4PS)

6 2107.01214 [Miller et al. '21]

(NeurlPS '21 conference)

% 2111.08030

(applications to cosmology)

[AC et al. '21]

Gilles Louppe

Patrick Forré

Netherlands eScience center/SURF

Maxwell Cai

Meiert Grootes

Francesco Nattino

- We just heard from Ben about TMNRE, and the results seems nice! But before we grab our wallets:
 - let's examine performance, nice features, etc. in a cosmological context.

Outline

- 1. Motivation
- 2. Our playground: CMB power spectra, results
- 3. Discussion

1. Motivation

Problem 1

- For most simulators, we cannot evaluate the full likelihood.
 - In cosmology: large-scale structure, 21-cm field, most late-time observations...
- Practitioners often restrict to theoretically controlled summary statistics such as the power spectrum at large scales.
 - We should worry that we're throwing the baby out with the bathwater.

21cm field, [SKA white paper 1210.0197]

These problems clearly **demand more refined summary statistics**. One option is hand-crafted summaries, e.g. persistent homology for large-scale structure, whose **likelihoods can be approximated**. Would prefer more knobs to optimize, theoretical guarantees about saturating information content.

[Biagetti, AC, Shiu (JCAP) '20; AC, Biagetti, Shiu (NeurIPS wksp '20)]

[Equilateral NG, 2203.08262]

[Λ CDM, to appear]

Problem 2

- Even if likelihood is known/ tractable:
 - For realistic inference, one must vary over instrumental calibration parameters, foreground residuals, latent variables ... ≡
 nuisance parameters
 - Sampling the joint posterior scales poorly with parameter space dimension.

classical inference cost w/ dimension

[Handley et al. 1506.00171]

Problem 2

• Decompose $\theta = (0, \eta) = (\text{relevant, nuisance})$

• Many scientific insights are derived from plots where ϑ is 0-or 1-dimensional.

Planck EE+lowE+BAO Planck TE+lowE Planck TT+lowE Planck TT,

Planck 2018

Vapnik's principle: "When solving a problem of interest, do not solve a more general problem as an intermediate step."

Motivates both NRE and directly targeting marginals.

- Trust, but verify.
 - We'd especially like to avoid overconfidence. False detections/etc. are embarrassing!
 - Need tools to rigorously assess consistency of results!

2. CMB Power Spectra

- A large fraction of experimental cosmology constraints come from the CMB power spectrum. A simulator (cf. Likelihood_mock_cmb in monte_python):
 - 1. Given cosmology, compute $C_\ell^{PP'}$ from Boltzmann code "exotic" -> 30 min
 - 2. Add instrumental noise $\overline{C}_{\ell}^{PP'} \equiv C_{\ell}^{PP'} + N_{\ell}^{PP'}$
 - 3. Sample the maximum likelihood $\hat{C}^{PP'}_{\ell}$, sampling full Wishart distribution at low ℓ and approximating with Gaussian at high ℓ . [details in AC et al.]

- A large fraction of cosmology constraints come from the CMB power spectrum. In [AC et al. '21] we defined a simulator for this.
- With Planck-like noise [Di Valentino et al. '16], drawing from the simulator looks like:

- Let's apply TMNRE to this simulator.
- There are 6 Λ CDM parameters to infer. For a prior, we use $\pm 5\sigma$ from a Fisher estimate. (i.e. truncation not necessary)
- The likelihood in this case is known, so we can compare convergence against MCMC.
- To compress the data, we use a linear embedding network, which compresses from 7500 to 10 features. [cf. Tegmark, Taylor, Heavens '97; Heavens, Jimenez, Lahav '00]

[AC et al. '21]

Convergence

- General question: when should we trust results generated by SBI? What techniques do we have when ground-truth MCMC is not available?
- Really important! (S)NPE, (S)NRE, SNLE, ABC are all capable of overconfidence [cf. Hermans et. al "Averting a Crisis in Simulation-Based Inference" 2110.06581]

[AC et al. '21]

Consistency check

Sky Mask

[AC et al. '21]

- When including a sky mask, the likelihood becomes pretty nasty. On the other hand, as a simulator the process is simple.
- Inference with MNRE is straightforward (5000 sims)

Realistic CMB

 Ramping up in realism! Hillipop likelihood: Planck likelihood, 13 varying nuisance parameters [Couchot et al. '16]

[AC et al. '21]

Zooming in

- Demonstration on prior that is "too big" by factor of $\bf 5$ in each parameter ($\bf 8/5$ for $\bf \tau$) prior volume "too big" by factor $\bf 5000$
- Truncation efficiently identifies relevant region with 20,000 sims over several rounds.

[AC et al. '21]

Zooming in

- Demonstration on prior that is "too big" by factor of $\bf 5$ in each parameter $(8/5 \text{ for } \tau)$ prior volume "too big" by factor $\bf 5000$
- Truncation efficiently identifies relevant region with 20,000 sims over several rounds.

Simulation reuse

In TMNRE, saved simulations can be reused by subsequent inferences with different experimental configurations, priors, network structures, etc.

 Promising for speeding up massive forecasting efforts.

Ratio Estimation is Flexible

[AC, Weniger in progress]

- There are plenty of odds ratios beyond the likelihood-toevidence ratio that are relevant to SBI. Conditionals, ...
- Can use ratio estimation to constrain latent variables and generate realistic data via constrained simulators.

 $\Theta \rightarrow_{\text{stochastic}} \text{latent field} \rightarrow_{\text{stochastic PDE}} \text{observed data}$

4. Discussion

Summary

- By directly targeting marginal posteriors, we can unlock flat scaling of simulation cost w.r.t. parameter space dimension.
- TMNRE agrees with long-run MCMC and requires order of magnitude fewer simulations.
- Rapid evaluation of many posteriors with a trained network allows for consistency tests beyond MCMC.

Discussion

- How best to combine aspects of NLE, NPE, NRE, various proposals for zooming in, marginalizing, for cosmology? For field X?
- More consistency tests?
- Pretraining (cf. LLMs) for scientific data?

Extra Slides

The CMB spherical harmonic coefficients obey

$$\langle a_{\ell m}^{P*} a_{\ell' m'}^{P'} \rangle = \left(C_{\ell}^{PP'} + N_{\ell}^{PP'} \right) \delta_{\ell \ell'} \delta_{m m'} \equiv \overline{C}_{\ell}^{PP'} \delta_{\ell \ell'} \delta_{m m'}$$

ullet $C_{\ell}^{PP'}$ computed from e.g. **CLASS**, $N_{\ell}^{PP'}$ is instrument noise

$$N_{\ell}^{PP'} \equiv \langle n_{\ell m}^{P*} n_{\ell m}^{P'} \rangle = \delta_{PP'} \theta_{\text{fwhm}}^2 \sigma_P^2 \exp\left(\ell(\ell+1) + \frac{\theta_{\text{fwhm}}^2}{8 \ln 2}\right)$$

ullet Then the likelihood for $a_{\ell m}^{PP'}$ is given by

$$p(\mathbf{a} \mid \boldsymbol{\theta}) \propto rac{1}{|\overline{C}(\boldsymbol{\theta})|^{1/2}} \exp\left(-rac{1}{2}\mathbf{a}^{\dagger}[\overline{C}(\boldsymbol{\theta})^{-1}]\mathbf{a}
ight) \quad \mathbf{a} = \{a_{\ell m}^T, a_{\ell m}^E\}$$

also B-modes, weak lensing, ... here we restrict for simplicity

ullet Given $\overline{C}_{\ell}^{PP'}$, we can sample $a_{\ell m}^P$ according to

$$p(\mathbf{a} \mid \boldsymbol{\theta}) \propto rac{1}{|\overline{C}(\boldsymbol{\theta})|^{1/2}} \exp\left(-rac{1}{2}\mathbf{a}^{\dagger}[\overline{C}(\boldsymbol{\theta})^{-1}]\mathbf{a}
ight) \qquad \quad \mathbf{a} = \{a_{\ell m}^T, a_{\ell m}^E\}$$

$$\begin{pmatrix} a_{\ell m}^T \\ a_{\ell m}^E \end{pmatrix} = L \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} \qquad LL^T = \begin{pmatrix} \overline{C}_{\ell}^{TT} & \overline{C}_{\ell}^{TE} \\ \overline{C}_{\ell}^{TE} & \overline{C}_{\ell}^{EE} \end{pmatrix} \quad n_i \sim \mathcal{N}(\mu = 0, \ \sigma = 1)$$

ullet For a single realization of the universe, we can only determine the maximum likelihood values for $\overline{C}_\ell^{PP'}$, denoted $\hat{C}_\ell^{PP'}$

$$\hat{C}_{\ell}^{PP'} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} a_{\ell m}^{P*} a_{\ell m}^{P'} = \frac{1}{2\ell + 1} \left(a_{\ell 0}^{P} a_{\ell 0}^{P'} + 2 \sum_{m = 1}^{\ell} a_{\ell m}^{P*} a_{\ell m}^{P'} \right)$$

ullet The likelihood for $\hat{C}^{PP'}_{\ell}$ is a Wishart distribution

$$-2\ln p\left(\hat{C}(\boldsymbol{\theta})\mid \overline{C}\right) = \chi_{\text{eff}}^2 = \sum_{\ell} (2\ell+1) \left[\frac{D}{|\overline{C}|} + \ln \frac{|\overline{C}|}{|\hat{C}|} - 2 \right]$$

$$D = \overline{C}_{\ell}^{TT} \hat{C}_{\ell}^{EE} + \hat{C}_{\ell}^{TT} \overline{C}_{\ell}^{EE} - 2 \overline{C}_{\ell}^{TE} \hat{C}_{\ell}^{TE}$$

ullet At high ${\mathscr C}$, this is approximately Gaussian with covariance

$$\operatorname{Cov}_{C_{\ell}} = \frac{2}{2\ell + 1} \begin{pmatrix} \left(\overline{C}_{\ell}^{TT}\right)^{2} & \overline{C}_{\ell}^{TT} \overline{C}_{\ell}^{TE} & \left(\overline{C}_{\ell}^{TE}\right)^{2} \\ \overline{C}_{\ell}^{TT} \overline{C}_{\ell}^{TE} & \frac{1}{2} \left(\overline{C}_{\ell}^{TT} \overline{C}_{\ell}^{EE} + \left(C_{\ell}^{TE}\right)^{2}\right) & \overline{C}_{\ell}^{TE} \overline{C}_{\ell}^{EE} \\ \left(\overline{C}_{\ell}^{TE}\right)^{2} & \overline{C}_{\ell}^{TE} \overline{C}_{\ell}^{EE} & \left(\overline{C}_{\ell}^{EE}\right)^{2} \end{pmatrix}$$