CURTAINS

Johnny Raine, Samuel Klein, Debajyoti Sengupta, Tobias Golling

University of Geneva

5th Inter-experiment Machine Learning Workshop

What is **CURTAINS**?

With CURTAINS, we are...

Constructing Unobserved Regions by Transforming Adjacent INtervals

- Data driven method for generating background template with a set of features
- Account for correlations between features and resonant variable

Bump hunts

Assumption: Signal localised in some feature (Usually, invariant mass)

⇒ Shows up as a **bump** in the spectrum

Method:

- Split spectrum into 'Side Bands'
- 2. Fit the distribution in Side Bands
- 3. Interpolate into the Signal region
- 4. Look for an excess!

So what's wrong?

New Physics is rare!

⇒ Increase sensitivity: use additional observables

CWoLa: Optimal Classifier for two different admixtures of classes ~ Optimal Classifier for fully supervised case.

Problem: Observables *strongly correlated to the mass.*

~ Differences even in the absences of signal!

What if we want to use these correlated variables?

Can we learn a conditional transformation of the features?

van we icarn a conditional transformation of the icatures:

What would a sample from side-band look like if it had the mass of a sample in signal region?

Idea + Motivation

Transform data from **the sidebands** into the **signal region**

⇒ Small correction

Transformed side bands provide a background template.

Train a classifier to separate background template from signal.

Learning to Transform

We can train the model to map from one sideband to the other

- Use a conditional invertible neural network (cINN).
- Many schemes available~, we use <u>rational quadratic splines</u>.

Train to transform batches of $\{x_1\}$ to $\{x_2\} \rightarrow$ backprop \rightarrow update weights.

Learning to Transform

And in both directions!

Train to transform batches of $\{x_2\}$ to $\{x_1\}$ \rightarrow backprop \rightarrow update weights.

Alternate between these passes over an epoch.

Application

cINN conditioned on the mass difference of input and target $\sim \Delta m$

To create bg template in SR~

- Sample target mass from fit pdf; compute Δm
- 2. Perform forward (backward) pass through cINN to get SR template from SB1 (SB2).

But why the mass difference?

Each sideband can be split further.

Mapping from SB1' to SB1" is the same as mapping from SB1" to SR

Conditioning variable: ∆m

- (min ~0, max ~ window width)
- \therefore Conditioning for SB \rightarrow SR:
 - Never out of distribution!

Alternate between inter and intra-band training throughout training.

Distance Measures:

How to estimate transformations of **distributions** over features?

- We don't have pairs, we want to shift one distribution to another.
- Optimal transport loss:
 - Sinkhorn loss between transformed events and target events.
- Trained over multiple epochs with shuffling of batches.

Curtains validation

Are our transformers any good?

- Training on narrow bands ~ Have OBs for validation!
- After training, Validate transformers on SB → OB.
- Invertible transformations, and choice of conditioning implies ~ SB→OB performance gives a reasonable bound on SB → SR performance.

Other methods

- CWoLa:

requires the additional features to be uncorrelated with the resonant variable.

- ANODE:

- Learn conditional (mass) density of data and background in SR and do classification.

- <u>CATHODE</u>:

- generate sample events from the trained, interpolated background density estimator → do classification.
- has been shown to outperform the other approaches for building templates.

Dataset: <u>LHCO R&D</u>

QCD dijet and signal samples. ~ dijet mass as the resonant variable.

Features used for training:

- Leading jet mass
- Difference in jet masses
- Subjetiness ratios
- ΔR_{jj}*

^{*}Strongly correlated with the dijet mass.

Transformation Performance

SB1: [3.2-3.4] TeV, SB2: [3.6, 3.8] TeV (no doping)

- Transformed features (with correlations)
 from SB1 → SB2.
 - Features in diagonal
 - Correlations in the off-diagonal.

Near perfect overlap of transformed and target!

Just as good in the inverse direction!

Validation regions

Narrow bands mean - we have the option to validate our transformations!

 SB2 [3.6, 3.8] TeV → OB2 [3.8, 4.0] TeV shown here.

Great overlap of Transformed and target distributions!

Signal region

Generated bg template in SR ~ used in classifier training (and eventually bump hunt)

Needs to accurate.

Can't compare in real analysis

- Transformed SB1→ SR and SB2 → SR
- Near perfect closure on all features and correlations!
- Generated bg template is good!

Expected Significance Improvement

Widen SR bin (200 \rightarrow 400 GeV) to fully contain the peak:

This is the same SR window as CATHODE.

Train CURTAINs in this window definition \rightarrow Generate bg template in SR \rightarrow Train a classifier on SR Data vs Template.

Measure Significance Improvement: $\epsilon_{\rm s}/\sqrt{\epsilon_{\rm B}}$

Classifier Setup

Architecture:

- Three hidden layers with 32 nodes
- Trained for 20 epochs
- Learning rate scheduler
- No early stopping
- Ten classifiers trained per run

Features:

All features used during transformer training!

Comparisons

ROCs and Significance Improvement Characteristic (SIC) curves:

Supervised: QCD vs signal with labels.

- Given the data, what's the best classification performance?
- Fully supervised 120k QCD vs 3k Signal (weighted loss).

Idealised: QCD vs QCD+Signal.

- Given the data, what's the best classification possible in the CWoLa setting?
- 50% of SR data as class 0, the rest doped with signal is class 1.

CATHODE*/CURTAINS: Generated Bg template vs SR data.

CURTAINs ~ Almost as good as Idealised performance!

Maximum Significance Improvement

...as a function of signal strength:

- CURTAINS performance excellent across all signal strengths!
- Generally better than 'Idealised' since it can oversample:
 - i.e. can generate loads of stats for bg template!

Curtains and oversampling

- Transform data in SB to multiple targets in SR
 ⇒ Oversampling.
- Check performance of CURTAINs as a function of oversampling.

CURTAINS already matches Idealised at ~2X oversampling!

Note: SR here contains 120k events.

CATHODE full width sidebands

CATHODE designed to use everything except SR as side bands \rightarrow CATHODE(full)

- CATHODE (full) recovers performance with more data.
- In this setting, we lose the possibility to do validation!

CURTAINs designed to work locally \rightarrow Fewer data required \rightarrow Retains regions of validation.

CURTAINS for a bump hunt

No one knows where the signal is!

Need to slide windows

Classifier: Slide and **Excess in bin? Transformer** Background Template **Template vs Data** repeat - Learn a transformer - Train a classifier on - Generate template - Apply cuts to reject to go from SB to SB. by transforming SB → generated bg template x% of generated and true SR data. background template. SR Validate on SB → OB - If there is signal in data - cut would reveal excesses over expected data.

- Generated

background template

needs to be good!

Bump hunt

CURTAINs applied to a dataset with no signal.

- New CURTAINs model trained every 200 GeV window
- Post classifier training, determine cuts to reject x% bg template
- Cut on true SR Data and see if there's any excess

When no signal is present, no bumps appear!

Bump hunt vs CATHODE

CATHODE (and CATHODE (full)) present spurious bumps in the absence of any signal.

Bump hunt - Injecting signal

60,000 bg events in the bin [3400, 3600] GeV.

Inject varying number of signals - More signal ⇒ Higher bump observed.

But even as low as 667 injected signals (~300 in [3.4 - 3.6] TeV) **CURTAINs finds a bump!**

Summary

CURTAINs provides a robust method for constructing background templates that

- 1. produces no spurious excesses when used in a bump hunt
- 2. finds bumps even at small signal injection
- Can be trained locally and on data only.

CURTAINS does not need to

- 4. sample from any prior distribution
- 5. be applied to ranges outside of the training distribution.

Preprint available on the arxiv.

Backup

Transformations

CURTAINs transformations for SB2 \rightarrow OB2 and SB2 \rightarrow SB1. For both regions we achieve excellent overlap.

Note: SB2 \rightarrow OB2 is (also) used as validation for the transformer.

 Expected to be a harder transformation as this is out of distribution compared to training.

Cathode comparisons

Bump hunt with various level of signal injections.

CURTAINs correctly produces a bump at the signal peak and gets better with higher signal strengths.

CATHODE (and CATHODE full) predicts excesses across all bins, and erroneous excesses at higher mass values.

Comparisons

The signal region contains 120,000 background events in total.

Model	Bkg Events	Signal Events
Supervised	120,000	3,000
Idealised	60,000	60,000 + 3,000
Curtains	540,000	60,000 + 3,000
Cathode	540,000	60,000 + 3,000

CURTAINs can do oversampling ~ Transform data from SB multiple times to different target mass values.

CURTAINS v CATHODE v CATHODE (Full)

CATHODE with extended sidebands recovers performance, and approaches the performance of CURTAINs at high rejection values.

