

UNIVERSITÄT HEIDELBERG 7UKUNF1 SFIT 1386

Calomplification: The Power of Generative Calorimeter Models

Sebastian Bieringer¹, Anja Butter, Sascha Diefenbacher, Engin Enren, Frank Gaede, Daniel Hundshausen, Gregor Kasieczka, Benjamin Nachman, Tilman Plehn, Mathias Trabs

¹Institut für Experimentalphysik, Universität Hamburg, Germany sebastian.guido.bieringer@uni-hamburg.de

Sebastian Bieringer

CERN-IML Workshop 2022

Realistic Calomplification

HELMHOLTZ

Introduction

Need to speed up MC

- Event generation
- Calorimeter simulation

simulation sp

S. Bieringer et al. Calomplification -- The Power of Generative Calorimeter Models. 2022. arXiv: 2202.07352 [hep-ph]

Sebastian Bieringer

- Use generative machine learning models like
 - Generative Adversarial Networks (GANs)
 - or Variational Autoencoders (VAEs)

beed =
$$\frac{\text{# samples}}{\text{time}}$$

- What about # samples?
- A. Butter et al. GANplifying Event Samples. 2021. arXiv: 2008.06545 [hep-ph]

Realistic Calomplification

Slow simulation e.g. calorimeter

Sebastian Bieringer

Realistic Calomplification

Toy Model: Setup

• Underlying function: $P(x) = \frac{1}{2} \left(\mathcal{N}_{-4,1}(x) + \mathcal{N}_{4,1}(x) \right)$

Realistic Calomplification

Toy Model: Setup

• Underlying function:

$$P(x) = \frac{1}{2} \left(\mathcal{N}_{-4,1}(x) + \mathcal{N}_{4,1}(x) \right)$$

- "Pearson χ^2 -test":
 - Introduce equal probability quantiles

Realistic Calomplification

Toy Model: Setup

• Underlying function:

$$P(x) = \frac{1}{2} \left(\mathcal{N}_{-4,1}(x) + \mathcal{N}_{4,1}(x) \right)$$

• "Pearson
$$\chi^2$$
-test":

- Introduce equal probability quantiles
- Generate data
- Calculate deviation metric

$$\hat{\chi}_{n_{\text{quant}}}^2 = n_{\text{quant}} \sum_{j=0}^{n_{\text{quant}}} \left(x_j - \frac{1}{n_{\text{quant}}} \right)$$

Realistic Calomplification

Toy Model: Generative Network DASHH

- Train on $n_{data} = 100$ data points generated from P(x)
- Prone to mode-collapse and overfitting:
 - Dropout
 - Noise augmentation
 - Batch-statistics
- Generate high amounts of data from Network

12.05.2022 | CERN-IML 7

Realistic Calomplification

true/fake

- GAN (red) and KDE (green) reach higher value than training data
 - sample: only data points
 - KDE: data + smooth, continuous function
 - GAN: data + smooth, continuous function
- I0.000 GANed points match 180 true ones
- Statistical uncertainty of training data becomes systematic uncertainty of the model

Realistic Calomplification

Sebastian Bieringer

Realistic Calomplification

- Examine high n_{quant} and high n_{data}
 - Train on $n_{data} = n_{quant}^2$
 - Generate $100 \cdot n_{data}$

- Examine which data converges to 0 fastest
- GAN amplifies data by a factor ~5

Realistic Calomplification

- Ring with gaussian radius
- GAN is trained on cartesian coordinates
- Quantiles are calculated on polar coordinates

GAN has to learn correlations

Sebastian Bieringer

DASHH

12.05.2022 | CERN-IML 11

Realistic Calomplification

Quantiles in radial and angular direction

Sebastian Bieringer

Realistic Calomplification

Do the same thing again:

- Examine high n_{quant} and high n_{data}:
 - Train on n_{quant}^2 data points
 - Generate $100 \cdot n_{data}$
- Examine which data converges to 0 (fastest)

Realistic Calomplification

Calorimeter Simulations: Data DASHH

• 269k photon showers at 50 GeV in International Large Detector [1]

Unknown true distribution, limited data

Sebastian Bieringer

Harder learning task \rightarrow training on multiple training set sizes unfeasible

Realistic Calomplification

Calorimeter Simulations: Architecture DASHH

Input

Unknown true distribution, limited data

Sebastian Bieringer

• Change to location-aware VAE-GAN architecture $\rightarrow 2202.07352$ [hep-ph] Output

Harder learning task \rightarrow training on multiple training set sizes unfeasible

Realistic Calomplification

Calorimeter Simulations: Setup DASHH.

Unknown true distribution, limited data

Sebastian Bieringer

Harder learning task \rightarrow training on multiple training set sizes unfeasible

Realistic Calomplification

Calorimeter Simulations: Setup DASHH

Imageshaped data

Sebastian Bieringer

Split into 218k validation data points and 50k evaluation data points Generate quantiles by dividing the validation set into equally populated parts

Realistic Calomplification

Imageshaped data

Sebastian Bieringer

Realistic Calomplification

- Use less than $n_{data}/10$ bins

Imageshaped data

distribution, limited data

Sebastian Bieringer

Evaluate for fixed training (1k) and evaluation set sizes (5k, 10k, 50k)

multiple training set sizes unfeasible

Realistic Calomplification

- Use less than $n_{data}/10$ bins

- High-scale features: limited by amount of training data
- Low-scale features: GAN estimation can not be matched by adding more data

Evaluate for fixed training (1k) and evaluation set sizes (5k, 10k, 50k)

Realistic Calomplification

How good is the density estimation actually?

Compare to KDE and histogram estimators (maximizing loglikelihood of cross-validation sets)

Sebastian Bieringer

Realistic Calomplification

• Generate 10⁶ samples from every density estimator

 GAN outperforms standard density estimators

Realistic Calomplification

Conclusion

- generative model?
 - Depends on GAN setup and problem
 - data
 - higher numbers of data

What about # samples? How many new points should we generate from a

• For high-scale observables (e.g. mean, standard deviation, low *moments*) generative network limited to the amount of training

• For a smooth interpolation (e.g. segments of the distribution, integrated quantities) a generative networks outperform even

References

[0]: P. Calafiura, J. Catmore, D. Costanzo, and A. Di Girolamo, "ATLAS HLLHC Computing Conceptual Design Report," CERN, Geneva, Tech. Rep., Sep 2020. [Online]. Available: https:// cds.cern.ch/record/2729668

[1]: ILD Concept Group, H. Abramowicz et al., International Large Detector: Interim Design Report, 3, 2020.

[2]: L. de Oliveira, M. Paganini, and B. Nachman, "Learning particle physics by example: Locationaware generative adversarial networks for physics synthesis," *Computing and Software for Big* Science, vol. 1, no. 1, Sep 2017. [Online]. Available: http://dx.doi.org/10.1007/s4178101700046

[3]: M. Paganini, L. de Oliveira, and B. Nachman, "Calogan: Simulating 3d high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks," *Physical* Review D, vol. 97, no. 1, Jan 2018. [Online]. Available: http://dx.doi.org/10.1103/ PhysRevD.97.014021

[4]: A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, "Autoencoding beyond pixels" using a learned similarity metric," in Proceedings of the 33rd International Conference on International Conference on Machine Learning Volume 48. JMLR.org, 2016, p. 1558–1566.

